Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

Review An overview of recent studies on the analysis of pharmaceutical polymorphs

Norman Chieng^a, Thomas Rades^b, Jaakko Aaltonen^{c,*}

^a Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States

^b School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand

^c School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland

ARTICLE INFO

ABSTRACT

Article history: Received 25 October 2010 Received in revised form 11 December 2010 Accepted 15 December 2010 Available online 22 December 2010

Keywords: Polymorphism Solvatomorphism Amorphous Crystallization Cocrystal Solid-state analytical techniques Pharmaceutical solids are well known to be able to exist in different solid-state forms and there are a wide variety of solid-state analytical techniques available to characterize pharmaceutical solids and solidstate transformations. In this review, the commonly used solid-state analytical techniques, the type of information collected, and advantages and disadvantages of each technique are discussed, with the focus on their application in solid-state characterization and monitoring solid-state transformations, such as amorphization, crystallization, hydrate formation/dehydration and cocrystal formation. The information gathered from recent literature is compiled in various tables to aid the reader to get a quick overall picture about what type of phenomena have recently been studied and which analytical technique(s) have been used.

© 2010 Elsevier B.V. All rights reserved.

Contents

 Sol Ap Ap 3.1 3.2 3.3 3.4 Sun Ac 	troduction	619 619 619 630 634 636 638 638
--	------------	--

1. Introduction

It is well known and recognised that pharmaceutical solids can exist in multiple crystalline solid forms. This behavior is known as polymorphism. In solvatomorphism, the formation of various crystals is the result of solvent molecules being incorporated in the crystal structure. When water is the solvent in the crystal lattice, such crystals are known as hydrates [1]. In contrast to these crystalline materials, an amorphous solid lacks three-dimensional

E-mail address: jaakko.aaltonen@helsinki.fi (J. Aaltonen).

long-range order, but may still have short-range order present over several molecular dimensions [2].

As poor aqueous solubility is a major concern in drug development, amorphous solids offer an attractive alternative because of their higher solubility which may lead to improved dissolution rate and thus possibly a higher bioavailability [3,4]. The higher solubility of amorphous solids is due to their higher energy and molecular mobility compared to their corresponding crystalline counterpart. However, the high energy and molecular mobility also make amorphous solids physically unstable. During manufacturing operations and/or storage amorphous forms are likely to revert into the stable or a metastable crystalline form if they are not adequately stabilized. Metastable polymorphs also often exhibit better solubility than the stable polymorphic form. However, the solubility advan-

^{*} Corresponding author. Current address: Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, PO Box 56, 00014 University of Helsinki, Finland. Tel.: +358 9 191 59158.

^{0731-7085/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jpba.2010.12.020

tage of a metastable form is usually less pronounced than that of an amorphous form [5,6]. More recently, cocrystals have attracted interest from the pharmaceutical community as they offer an alternative way to overcome poor aqueous solubility without sacrificing stability. A cocrystal is defined as a multiple component crystal in which all components are solid under ambient conditions when in their pure form [7].

A recent study estimated that 80–90% of organic compounds are capable of existing in polymorphic forms [8]. Polymorphs are known to give rise to significant differences in the physicochemical properties of the compound, for example, melting point, density, morphology, solubility and colour. This in turn may have an impact on the stability (physical and chemical), bioavailability and processability during manufacturing and/or in the final product [9]. In an extreme case, an undesired polymorph can even be toxic [10]. These concerns have led to increased regulatory requirements by the Food and Drug and Administration (FDA) [11]. Since then, polymorphism has become an increasingly important research topic, both in academia and the pharmaceutical industry. It is not uncommon to observe solid-state changes due to extreme conditions used in manufacturing operations, such as extensive mechanical and thermal stress and exposure to solvents. As a result, drug product performance may be significantly altered and/or fail to meet the quality specifications. Thus, proper monitoring of solid-state forms, both qualitative and quantitative, is crucial in order to ensure high-quality products [12].

The multitude and diversity of solid forms requires a thorough understanding of solid-state phenomena that may occur in pharmaceutical materials. This can only be achieved by applying associated theories to experimental results obtained with various analytical instruments. Over the decades, the capability to analyze drug polymorphs has become increasingly convenient owing to the improvement and advancement of the technologies and software available. In this review, several commonly used analytical techniques to analyze and characterize solid pharmaceutical materials are discussed. The information gathered from recent literature is compiled in tables to aid the reader to get a quick overall picture about what type of phenomena can and have been studied, and which analytical techniques have been used. In the latter sections we look at application examples of the various analytical techniques in the qualitative and quantitative solid-state analysis of active pharmaceutical ingredients (APIs).

2. Solid-state analytical techniques

The characterization of pharmaceutical solids can be performed with a wide variety of analytical techniques. General summaries of these techniques have been described in excellent textbooks [2,13]. There is no single superior method for all cases, and the method(s) of choice for any particular case depends on the key property under investigation. Usually the preferred approach is to utilise a combination of techniques to achieve a comprehensive understanding of the solid-state properties as each technique provides unique information about the solid-state form. Brittain et al. categorized solid-state characterization techniques into those associated with the molecular level (i.e., properties associated with individual molecules), the particulate level (i.e., properties pertaining to individual solid particles) and the bulk level (i.e., properties associated with an assembly of particles) [13]. A summary of commonly used analytical techniques, including their advantages and disadvantages is given in Table 1. The emphasis in this review is on molecular and particulate level techniques.

3. Applications of different techniques in pharmaceutical solid-state analysis

In pharmaceutical research, development and manufacturing, there is no lack of examples of how solid-state analytical techniques have, in some way or other, helped scientists to better understand the pharmaceutical solids of interest (APIs and excipients). Table 2 presents an overview of pharmaceutically relevant solids and systems studied by various solid-state analytical techniques over the last decade. In this table, the examples and the reference citation are presented with a short description and a list of solid-state analytical technique(s) used in the respective study. The table is sorted alphabetically, according to the API/excipient.

Table 2 reveals that most studies (\sim 90%) use at least two or more solid-state analytical techniques (the median is four techniques per study) to characterize the sample of interest. In these studies, usually one technique was selected from the range of molecular level techniques (i.e., spectroscopic techniques) and another from the particulate level methods (i.e., X-ray diffraction, thermal method or microscopy). The most frequently used solid-state techniques were (in descending order) (1) powder X-ray diffraction (PXRD), (2) differential scanning calorimetry (DSC)/modulated temperature DSC (MTDSC), (3) mid-infrared spectroscopy (IR) and (4) microscopy. The next routinely used techniques were Raman spectroscopy, near-infrared spectroscopy (NIR), solid-state nuclear magnetic resonance (ss-NMR) and thermogravimetric analysis (TGA)/dynamic vapour sorption (DVS). The largest number of analytical tools used for solid-state characterization in a single study was eight [14-18]. There are also studies where the researchers used only one analytical instrument [19–29]. These studies came from a larger research programme where a level of understanding of the solid-state form of the compound had already been achieved from previous work, or where data treatment tools such as chemometrics or pair distribution function (PDF) were employed to extract information from the data. Amongst the single-instrument research work, spectroscopic techniques, specifically Raman and NIR were frequently used. While most studies focused on the solid-state behavior of pharmaceuticals the same analytical techniques could also be used for other purposes, e.g., quality control testing [30], drug distribution in extrudates [31] and drug-excipient compatibility testing [32,33].

In this review, the applications of solid-state analytical techniques are divided into four categories based on the type of solid-state phenomena involved in the particular studies. These categories are polymorphism and polymorphic transformations, amorphization/recrystallization, solvate systems and cocrystals. Examples and detailed information on how various solid-state analytical techniques were used with regards to each solid-state phenomenon are given in the respective tables (Tables 3–6).

3.1. Studies involving crystal polymorphism and polymorphic transformations

Polymorphic transformations between crystalline forms of an API in, e.g., crystallization, milling and heating/cooling studies have been successfully characterized by various solid-state analytical methods (Table 3). Based on this survey the analysis of crystalline forms usually involves the use of either PXRD or a spectroscopic method or a combination thereof. The preference for PXRD and spectroscopic methods can be attributed to the unique diffraction pattern/spectra of each individual polymorphic form. PXRD directly detects crystal lattice properties. Changes in the diffraction pattern can imply the presence of a new polymorph (appearance or disappearance of polymorph-specific diffraction peaks), or a smaller change in the crystal lattice, such as the introduction of a slight disorder or change in lattice parameters (small decreases in peak intensity or minor peak shifts). Spectroscopic methods

Table 1

Analytical techniques commonly used for solid-state characterization of drugs.

Analytical techniques	Information	Advantage	Disadvantage
Molecular level			
Spectroscopies Mid-IR [117–119] (Fourier transformed infrared (FT-IR)/diffused reflectance infrared transmission spectroscopy (DRIFTS)/attenuated total reflectance (ATR))	 Intramolecular vibrations, H-bonding Polymorphic forms: unique bands, peak shifting Amorphous form: broadening of peaks Complementary to Raman spectroscopy Spatial chemical information with imaging setups 	- Small sample size - Relatively fast data acquisition - Availability of spectral libraries - Instruments readily available - No sample preparation required for ATR	- Sample preparation in FT-IR and DRIFTS can induce solid-state transformation - Interference from environmental humidity
Raman [117,119–124]	 Intramolecular vibrations Polymorphic forms: unique bands, peak shifting Amorphous form: broadening of peaks - Complementary to IR spectroscopy -Spatial chemical information with imaging setups 	 Small sample size No sample preparation required Non-destructive method Ability to penetrate through glass containers Insensitive to water - experiments in aqueous environment possible Relatively fast data acquisition Fiber optic probes available At low frequencies Raman spectroscopy can be used to analyze particulate level properties (lattice vibrations) [125] 	- Local heating of sample - Sample fluorescence - Photodegradation
Near infrared (NIR) [119,126-129]	 Overtones and combinations of vibrations in the mid-IR region Sensitive to different water states Spatial chemical information with imaging setups 	 Fast data acquisition Non-destructive method No sample preparation required Ability to penetrate glass containers Fiber optic probes available Can also be used for particulate level (e.g., particle size) and bulk level (e.g., water content) measurements with proper calibration 	- Low sensitivity and selectivity (weak intensity) - Significant baseline slope - May require chemometrics to analyz NIR spectra
Solid-state nuclear magnetic resonance (ss-NMR) [119,130–132]	- Nuclei and chemical environment within a molecule - Molecular dynamics - Interactions; drug-drug or drug-excipients	- Non destructive method - Qualitative and quantitative without calibration	- Relatively long data acquisition time - Relatively expensive
Particulate level			
Spectroscopy Terahertz pulsed spectroscopy (TPS) [40–42,114,124,133,134]	- Intramolecular and lattice vibrations (phonon modes) Polymorphic forms: unique peaks Amorphous form: no spectral features	- Small sample size (5–40 mg) - Rapid data acquisition (milliseconds)	 Spectrum affected by water Baseline slope (may or may not affect the result interpretation) Relatively expensive Requires pellet compression (0.5–3 mm thickness) Particle size of 100 µm is preferred to minimize scattering
X-ray Powder X-ray diffraction (PXRD) [13,135–137]	 Structural information from 5 to 90°2θ Polymorphic forms: unique diffraction peaks Amorphous form: no peaks, broad halo Degree of crystallinity Combine with PDF to yield more structural information (i.e., differences between amorphous states and/or nanocrystalline drug) 	- Sample size of >50 mg - Non-destructive method - Qualitative and quantitative	- Preferred orientation - No information about the chemical structure
Single crystal X-ray diffraction (SCXRD) [13,135-137]	See PXRD -Traditionally used to solve crystal structures	- Non-destructive method	- Requires a single crystal of >0.1 mm size [38,39]
Small angle X-ray scattering (SAXS) [138,139]	- Structural information from 0.01 to $3^{\circ}2\theta$	- Non-destructive method - Probes relatively large-scale structures (nm to µm range)	- Conventional SAXS: relatively long data acquisition time [140] - Needs advanced interpretation of data
Thermoanalytical and gravimetric analyses Differential scanning calorimetry (DSC) [13,58,141,142]	 Thermal events; glass transition temperature (T_g), crystallization temperature (T_c) and melting temperature (T_m), heat capacity, heat of fusion/transition/crystallization Interactions; drug-drug or drug-excipient 	- Small sample size (~3-10 mg) - Qualitative and quantitative	- Sample is destroyed during analysis - No information on the nature of the thermal events - Unable to resolve overlapping thermal events at the same temperature

Table 1 (Continued)

Analytical techniques	Information	Advantage	Disadvantage
Modulated temperature differential scanning calorimetry (MTDSC) [143–145]	See DSC - Separation into reversing and non-reversing heat flow (i.e., more information available)	- Improves clarity of small (i.e., <i>T</i> g) and overlapping thermal events	 More experimental variables (i.e., amplitude and period setting) Relatively long data acquisition time Interpretation of the 'separated' thermograms not always straightforward
Thermogravimetric analysis (TGA)/dynamic vapour sorption (DVS) [146,147]	- Transitions involving either a gain or a loss of mass - Decomposition temperature - Use in conjunction with Karl Fischer titration	- Amount of solvate/hydrate in a sample - Experimental set up is straightforward - Small sample size (~3–10 mg)	 Interference with water-containing excipients Sample is destroyed during analysis Unsuitable for materials that degrade at low temperatures
Isothermal microcalorimetry (IMC) [148–152]	- Heat change in a reaction, e.g., enthalpy relaxation of amorphous material (direct measurement), heat of crystallization	 High sensitivity Qualitative and quantitative analyses Stability study directly under the storage condition Non destructive method 	- Low specificity (i.e., interpretation of data can be difficult) - Large amount (50-500 mg) of sample required
Solution calorimetry (SC) [148,149,153]	- Heat change in a reaction, e.g., heat of solution (main), heat of wetting, heat capacity of liquids, heat capacity of solids (mixture method)	- Qualitative and quantitative analyses	 Low specificity (i.e., interpretation of data can be difficult) Large amount (15–200 mg) of sample required Sample cannot be recovered Long measurement time
Microscopy			2011g measurement time
Polarized light microscopy (PLM) [13,115,154–156]	- Crystallinity (birefringence) - Morphology, colour and crystal habit	- Small sample size (microgram amount) - Easy to use - Very little sample preparation	- Quantitative information not available
With hot/cryo/freeze drying stage	- Complementary information on phase transition/physical changes in frozen state	- Temperature variability	- Careful sample preparation is required to avoid contamination with the thermal contact liquid
Scanning electron microscopy (SEM) [13,156]	- Topographical properties	- Higher resolution than light microscopy - Small sample size (microgram amount)	- Requires sample preparation and stage condition setup (vacuum setting
Bulk level/other		· · · · · · · · · · · · · · · · · · ·	
Karl Fischer titration [157,158]	- Water content (adsorbed or hydrate) - Use in conjunction with TGA/DVS	- High sensitivity - Rapid analysis	- Sample needs to dissolve in the medium - Sample size of >50 mg is preferred
Brunauer, Emmett and Teller (BET) method [159,160]	- Surface area of the samples (the BET equation is an extension of the Langmuir equation, for multilayer adsorption)	- Analysis is simple and straightforward - Non-destructive method	 Degassing step is required to remove adsorbed water or gas molecules Small sample size (50–100 mg); sample amount may need to be adjusted depending on the surface are of sample
Density (gas pycnometer) [13]	- True density of the sample by dividing the known mass with the measured volume	- Analysis is simple and straightforward - Non-destructive method	 Degassing step (purging with helium is required to remove adsorbed water or gas molecule Sample size of >50 mg is preferred

do not directly measure lattice properties, but by measuring the intra- and intermolecular interactions of the molecules in solids they also provide structural information. Numerous examples exist where polymorphic transformations were thoroughly described using PXRD and/or spectroscopic methods only [34-37]. Raman spectroscopy, Fourier transform infrared (FT-IR)-attenuated total reflection (ATR) spectroscopy and NIR spectroscopy offer practical advantages over other spectroscopic methods as no sample preparation is required prior to sample analysis. Raman and IR spectroscopy are powerful and sensitive tools for qualitative and quantitative solid-state studies because all spectral bands can be assigned to specific features of the molecule under investigation. NIR spectroscopy can be used for the differentiation of polymorphs, and with a calibration model also quantification is possible. A drawback of NIR is that the bands observed in the spectra often cannot be assigned to specific bonds in molecules. Recently, in-line/on-line analysis of polymorphic transformations by the use of fiber-optic probe instruments (most often Raman or NIR spectroscopy) has gained popularity. The great potential of such instruments for process analytical purposes has now been demonstrated and we are witnessing the applications of those for the solid-state form analysis in commercial manufacturing operations.

When in-depth characterization of crystal structure or molecular structure in the crystal is needed, single crystal X-ray diffraction (SCXRD) and ss-NMR techniques provide useful information. However, they are not as popular as the above mentioned techniques, maybe due to the fact that both are quite labour-intensive: SCXRD requires a 'perfect' single crystal of >0.1 mm [38,39]; and the preparation of such is not always an easy task. ss-NMR on the other hand requires very little sample preparation and even dosage forms can be analyzed, but an obvious downside of this technique is that the measurement time is guite long. Terahertz pulsed spectroscopy (TPS) or terahertz time-domain spectroscopy (THz-TDS) is another vibrational spectroscopic technique that has been used for various pharmaceutical applications [40]. Unlike the above-mentioned spectroscopic techniques, TPS is a particulatelevel technique rather than a molecular-level technique; it directly detects lattice-level phenomena (infrared active vibrational modes in the far-infrared and sub-millimeter region of the electromagnetic spectrum), and can therefore be used for the characterization of different crystalline forms [41]. TPS can be particularly useful when investigating samples with small or uncommon structural differences that may be hard to detect with other solid-state analytical techniques [42].

An overview of solid-state analytical techniques used to study pharmaceutical solid materials.

σ
Ň
Ν

N. Chieng et al. / Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 618–644

API/sample	Year of publica- tion	Description of the study	Solid state	e analytical 1	techniques													
			Molecula	r level			Particulate	e level								Bulk level	/other	
			Spectrosc	ору				X-ray			Thermal a	nd gravimetrie	c	Micro	scopy			
			Vibration	al spectrosco	ору	Other	TPS	PXRD	SCXRD	SAXS	DSC/ MTDSC	TGA IMC (and DVS)	SC	PLM	SEM	Karl Fischer titration	BET surface area	Density (Pycnometer)
			Mid IR	NIR	Raman	ss-NMR												
[4-(4-Chloro-3-fluorophenyl)-2- [4-(methyloxy)phenyl]-1,3- thiazol-5-yl] acetic acid [161]	2009	Characterization of polymorphs	\checkmark			\checkmark		\checkmark			\checkmark							\checkmark
Acebrophylline [162]	2007	Characterization of polymorphism including colustomorphism						\checkmark			\checkmark	\checkmark		\checkmark				
Acrinol [88]	2010	solvatomorphism Polymorphism and dehydration						\checkmark	\checkmark		\checkmark	\checkmark						
Acyclovir [27]	2003	Quantitative analysis of solid drugs through blister packaging			\checkmark													
Acyclovir and lactose [32]	2009	Drug-excipient compatibility in physical mixture and	\checkmark								\checkmark							
Aminophylline [163]	2002	commercial tablet Solid state decomposition reactions						\checkmark			\checkmark	\checkmark		\checkmark			\checkmark	
Ampicilline, nitrofurantoin and compound A [78]	2008	Characterization of hydrate and salt form	\checkmark					\checkmark			\checkmark	\checkmark						
Anti-HIV UC781 [164]	2008	Characterization of drug-polymer (binary/ternary mixture) solid dispersion				\checkmark		\checkmark			\checkmark							
Atorvastatin calcium [30]	2010	Quality control of commercial product						\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Baclofen [165] Benzimidazole [166]	2007 2005	Solid-state characterization Characterization and quantification of polymorph composition in commercial products	\checkmark	\checkmark				\checkmark			\checkmark	\checkmark						
Berberine Cl hydrates [167]	2010	Process induced transformation	\checkmark					\checkmark			\checkmark	\checkmark			\checkmark			
Bezafibrate [168]	2009	Characterization of polymorphs	\checkmark					\checkmark	\checkmark		\checkmark	\checkmark		\checkmark				
Bicifadine HCI [169]	2005	Characterization of polymorphs	\checkmark	\checkmark				\checkmark			\checkmark							
Bupivacaine HCl [170]	2010	Characterization of drug-polymer complex	\checkmark					\checkmark			\checkmark				\checkmark			
Buspirone HCl [16] [15]	2006, 2007	Characterization and quantitative analysis comparing various analytical techniques	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			
BVT5128 [171]	2006	Physical characterization of anhydrous and hydrate forms	\checkmark					\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Carbamazepine [172]	2009	Solid-state transformation during dissolution			\checkmark			\checkmark							\checkmark			
Carbamazepine [19]	2007	Solvation and desolvation kinetics										\checkmark			,			
Carbamazepine [173]	2007	Influence of excipients on solid-state transformation during dissolution						\checkmark							\checkmark			
Carbamazepine [44]	2005	Characterization of polymorphs					\checkmark				\checkmark							
Carbamazepine [82]	2007	Polymorph detection and quantification in binary mixtures			\checkmark			\checkmark				\checkmark			\checkmark			
Carbamazepine and piroxicam [53] Carbamazepine, enalapril maleate, fenoprofen calcium dehydrate and indomethacin [41]		Dehydration during drying Quantification of polymorphism and crystallinity		\checkmark	\checkmark		\checkmark	\checkmark				\checkmark				\checkmark		
Carbamazepine-nicotinamide [115]	2007	Characterization of cocrystals			\checkmark			\checkmark			\checkmark			\checkmark				

Celecoxib [174]	2003	Characterization of polymorphs	\checkmark				\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Chlorpropamide [175]	2007	Polymorphic transformation induced by mechanical			\checkmark			\checkmark	\checkmark					
Cimetidine [176]	2002	activation Physical stability of amorphous drug				\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	
Cimetidine-piroxicam [177]	2010	Amorphization of drug-drug binary mixture	\checkmark				\checkmark							
Ciprofloxacin [28]	2001	Quantitative analysis of drug in pharmaceutical solid			\checkmark									
Clarithromycin [178]	2002	dosage form Qualitative and quantitative analyses of polymorphs				\checkmark	\checkmark		\checkmark	\checkmark				
Cyclosporin [179]	2005	Quantitative analysis of amorphous drug in binary (amorphous-crystalline) mixture	\checkmark											
Danazol [180]	2008	Characterization of drug-polymer solid dispersion	\checkmark				\checkmark		\checkmark				\checkmark	
Diclofenac sodium [181]	2007	Characterization of hydrate forms	\checkmark				\checkmark		\checkmark	\checkmark				
Didanosine [38]	2010	Characterization of crystal structure	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	
Diflunisal [182]	2002	Characterization of drug-polymer solid dispersion	\checkmark				\checkmark		\checkmark			\checkmark		
Dipyridamole, carbamazepine, glibenclamide, and indomethacin [183]	2005	Characterization of amorphous form prepared by various methods	\checkmark				\checkmark		\checkmark	\checkmark				
Disodium hydrogen phosphates and theophylline [90]	2003	In-line monitoring of dehydration behavior of drug during fluid bed drying		\checkmark			\checkmark							
Efavirenz-cyclodextrin complexes [184]	2009	Characterization of drug–cyclodextrin complexes					\checkmark		\checkmark				\checkmark	
Emodepside [185]	2009	Characterization of hydrate forms	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		
Enalapril salts [186]	2008	Characterization of six salt forms	\checkmark				\checkmark		\checkmark	\checkmark		\checkmark	$\sqrt{-\sqrt{-1}}$	
Ephedrine and pseudoephedrine [24]	2005	Quantitative analysis of binary mixture	\checkmark											
Famotidine [187]	2009	Quantitative analysis in binary mixture			\checkmark		\checkmark							
Famotidine [51]	2006	Solid-state transformation during grinding	\checkmark						\checkmark					
Fenofibrate [188]	2009	Solid-state structure and recrystallization behavior	\checkmark		\checkmark		\checkmark		\checkmark					
Finasteride [189]	2007	Characterization of polymorphs				\checkmark	\checkmark	\checkmark						
Flufenamic acid [34]	2007	Characterization of transition temperature of an enantiotropic polymorph			\checkmark									
Flufenamic acid and magnesium oxide [190]	2010	Quantitative analysis of binary mixture					\checkmark					\checkmark		\checkmark
Flurbiprofen [22]	2006	Characterization of drug-polymer solid dispersion				\checkmark								
Furosemide [191]	2000	Characterization of drug–polymer solid dispersion					\checkmark		\checkmark					

Table 2 (Continued)

API/sample Year of Description of the study publication of the study pu

			Spectroscopy			Х-гау				Thermal and gravimetri				metric Microscopy					
			Vibration	al spectros	сору	Other	TPS	PXRD	SCXRD	SAXS	DSC/ MTDSC	TGA (and DVS)	IMC	SC	PLM	SEM	Karl Fischer titration	BET surface area	Density (Pycnometer)
			Mid IR	NIR	Raman	ss-NMR													
Hydroxyprocaine HCl, tetracaine HCl and hydroxytetracaine HCl [192]	2006	Characterization of non-stoichiometric hydrate crystals	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark			\checkmark				
Ibuprofen and naproxen [193]	2005	Characterization of drug-polymer solid	\checkmark			\checkmark		\checkmark			\checkmark				\checkmark	\checkmark			
Ibuprofen and nicotinamide [194]	2005	dispersion Characterization of drug–hydrotrope suspension	\checkmark			\checkmark		\checkmark			\checkmark				\checkmark				
Indomethacin [195]	2006	Polymorphic transformation under high pressure				\checkmark			\checkmark		\checkmark					\checkmark			
Indomethacin [76]	2007	Quantitative analysis of ternary mixtures (two polymorphic forms and an amorphous state)		\checkmark	\checkmark														
Indomethacin and carbamazepine [70]	2009	Solid-state transformation during dissolution of amorphous drugs			\checkmark			\checkmark											
Indomethacin, ketoconazole, nifedipine, flopropione, felodipine [196]	2008	Molecular mobility of amorphous form: comparison of relaxation times obtained by DRS, calorimetric, and TSDC method									\checkmark		\checkmark						
Indomethacin, piroxicam and microcrystalline cellulose [23]	2006	Differentiating amorphous and nanocrystalline material using PXRD						\checkmark											
Indomethacin-saccharin [197] Lactose [198]	2008 2004	Characterization of cocrystals Quantifying amorphous content	\checkmark	\checkmark				$\sqrt[]{}$	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				
Lactose, carbamazepine, piroxicam and theophylline [199]	2007	Characterization of hydrate systems and phase transition of hydrate to anhydrous forms					\checkmark	\checkmark											
L-Hydroxypropylcellulose, α-lactose monohydrate, pregelatinized starch, silicified microcrystalline cellulose; nitrofurantoin [200]	2005	Effect of excipients on solid-state transformations of API during wet granulation						\checkmark			\checkmark							\checkmark	
Mannitol [201]	2008	Quantitative analysis of five			\checkmark			\checkmark											
Mannitol-sucrose solid mixtures (with or without	2010	polymorphic forms Characterization of freeze-dried		\checkmark															
histidine/NaCl/CaCl ₂) [202] Mepivacaine HCl [203]	2005	mannitol-sucrose samples Characterization of polymorphs	\checkmark					\checkmark	\checkmark		\checkmark	\checkmark							
Naproxen [204–206]	2001, 2003, 2005	Characterization of drug-polymer binary or drug-amino acid-polymer	\checkmark					\checkmark			\checkmark	\checkmark							
Naproxen [207]	2004	ternary system Characterization of drug–polymer/copolymer solid dispersion	\checkmark					\checkmark			\checkmark					\checkmark			
Nifedipine [208]	2002	Solid dispersion Solid state characterization of nifedipine solid dispersions	\checkmark					\checkmark			\checkmark								
Nitrofurantoin [209] Nitrofurantoin, theophylline, caffeine and carbamazepine (anhydrate and hydrate forms) [210]	2007 2005	Polymorph screening Quantitative analysis in binary mixtures			$\sqrt[]{}$		\checkmark	$\sqrt[]{}$								\checkmark			
Ofloxacin-oxalic acid complexes [211]	2009	Characterization of co-ground binary mixture	\checkmark			\checkmark	\checkmark	\checkmark											
Olanzapine [212]	2003	Characterization of polymorphs and hydrates				\checkmark		\checkmark	\checkmark			\checkmark							
Omeprazole sodium [213]	2009	Characterization of API in salt form	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark				\checkmark	\checkmark		

PEG 4000 with various lipids [214]	2010	Crystallization of PEG 4000 in polymer-lipid systems								\checkmark	\checkmark						
Phenazine and mesaconic acid	2007	Characterization and					\checkmark						\checkmark				
[215]		quantitative analysis of cocrystals															
Piroxicam monohydrate and	2008	Quantification during		\checkmark	\checkmark			\checkmark				\checkmark		\checkmark		\checkmark	
carbamazepine dihydrate [53] Prednisolone [216]	2007	isothermal dehydration Characterization of				\checkmark		\checkmark				./					
	2007	drug-polymer solid dispersion				v		v				v					
Progesterone [217]	2008	Characterization of	\checkmark		\checkmark			\checkmark			\checkmark	\checkmark				\checkmark	\checkmark
Progesterone [218]	2007	drug–cyclodextrin complex Characterization of	\checkmark		\checkmark			\checkmark			\checkmark	/			/		
		drug-polymer solid	v		v			v			v	v			v		
		dispersion prepared by freeze drying															
Quinapril [219]	2002	Solid state stability of						\checkmark						\checkmark			
		amorphous drug-polymer solid dispersion system															
Raloxifene HCl with hydrophilic carriers (PVPs, HPMC, HPC and	2009	Physicochemical properties of raloxifene HCl co-ground	\checkmark					\checkmark			\checkmark				\checkmark		
sodium alginate) [220]		with various hydrophilic															
Ranitidine HCI [75]	2009	excipients Quantitative analysis in a			./			\checkmark			\checkmark						
Kuntiune rier[75]	2005	ternary mixture (two			v			v			v						
		polymorphic forms and an amorphous state)															
Rifampicin [221]	2004	Characterization of	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark		\checkmark	\checkmark		
Roxifiban [222]	2002	polymorphic forms Characterization of	~		\checkmark	~		\checkmark			~		\checkmark				
	2009	polymorphs Quality control study:	•	1	•	·		•			•		•				
RWJ-333369 [223]	2009	stability and impurity testing	\checkmark	\checkmark				\checkmark									
Salmeterol xinafoate [224]	2008	in OROS [®] formulation Characterization of		/	/			\checkmark			/						
		polymorphs		v	v			v			v						
Salmeterol xinafoate [45]	2008	Characterization of polymorphs						\checkmark			\checkmark			\checkmark			
Sibutramine HCl monohydrate	2010	Thermal behavior,	\checkmark					\checkmark			\checkmark	\checkmark			\checkmark		
[225]		decomposition kinetics and compatibility in physical															
Simvastatin and indomethacin	2010	mixtures Quantification of process			,			,			\checkmark						
[226]		induced disorder			v			v			v						
Siramesine HCI [81]	2009	Anhydrate-hydrate, salt-base transformation during			\checkmark			\checkmark						\checkmark			
Collinso N (C) (and in colling of the soul) A	2006	dissolution	,	,		,		,	,		,	,				,	
Sodium N-(3-(aminosulfonyl)-4- chloro-2-hydroxyphenyl)-N-(2,3-	2006	Solid state characterization of API with multiple water	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark				\checkmark	
dichlorophenyl) urea trihydrate [17]		molecules															
Spironolactone [227]	2008	Physicochemical	\checkmark								\checkmark	\checkmark			\checkmark		
		characterization of drug content in capsule															
Stavudine [18]	2000	Characterization of	\checkmark		\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Sulfamethoxazole [29]	2000	polymorphs and hydrate Quantitative analysis of		\checkmark													
Sulfamethoxazole, sulfathiazole,	2000	binary solid mixtures Quantitative analysis of		\checkmark				\checkmark									
lactose, and ampicillin [228]	2000	binary solid mixtures		\checkmark				v									

Table 2 (Continued)

API/sample	Year of publica- tion	Description of the study	Solid state	e analytical	techniques													
			Molecula	r level			Particulate	e level								Bulk level	/other	
			Spectrosc	ору				X-ray			Thermal a	nd gravimetric	c	Micro	scopy			
				al spectroso	сору	Other	TPS	PXRD	SCXRD	SAXS	DSC/ MTDSC	TGA IMC (and DVS)	SC	PLM	SEM	Karl Fischer titration	BET surface area	Density (Pycnometer
Sulfathianala (220)	2005	In line menitoring of	Mid IR	NIR	Raman	ss-NMR		1										
Sulfathiazole [229]	2005	In-line monitoring of crystallization process and solid-state characterization of crystalline product	\checkmark					\checkmark										
Sulfathiazole [230]	2003	Polymorph screening and processing-induced transformation (PIT) screening		\checkmark				\checkmark			\checkmark	\checkmark						
Sulfathiazole and chlorpropamide [231]	2003	Characterization of polymorphs						\checkmark			\checkmark				\checkmark			
Sulfathiazole, theophylline and nitrofurantoin [25]	2005	Characterization of anhydrous/hydrate solid form using a variable temperature method						\checkmark										
Tacrolimus [232]	2003	Characterization of drug-polymer solid dispersion	\checkmark					\checkmark			\checkmark				\checkmark			
Terazosin HCl [233]	2006	Characterization of polymorphs and hydrates		\checkmark		\checkmark		\checkmark			\checkmark							
Theophylline [234]	2007	Monitoring of solid-state transformation during fluidization		\checkmark	\checkmark			\checkmark			\checkmark					\checkmark		
Theophylline [21]	2007	Hydration and dehydration process			\checkmark													
Theophylline [235]	2001	Determination of the crystal structure				\checkmark		\checkmark										
Theophylline [91]	2004	In-line monitoring of solid-state transformations during wet granulation		\checkmark	\checkmark												\checkmark	
Theophylline and caffeine [236]	2002	Characterization of hydrate formation during wet granulation		\checkmark	\checkmark			\checkmark										
Theophylline and nitrofurantoin [237]	2006	Hydrate formation during dissolution			\checkmark			\checkmark							\checkmark			
Theophylline anhydrate [31]	2010	Drug distribution in solid lipid extrudates			\checkmark										\checkmark			
Theophylline anhydrate [84]	2008	Hydrate formation during dissolution using various setups			\checkmark			\checkmark										
Theophylline monohydrate [238]	2006	Dehydration pathway and kinetics with or without PVP	\checkmark					\checkmark			\checkmark	\checkmark						
Theophylline monohydrate and carbamazepine dihydrate [239]	2006	Phase stability of hydrate-anhydrate systems in the presence of excipients			\checkmark				\checkmark					\checkmark				
Theophylline–nicotinamide [155]	2009	Characterization of cocrystals			\checkmark			\checkmark			\checkmark	\checkmark		\checkmark				
Topotecan HCI [240]	2006	Characterization of hydrate forms	\checkmark			\checkmark		\checkmark				\checkmark				\checkmark		
Trimethoprim [241]	2005	Characterization of drug-polymer complexes						\checkmark			\checkmark							
Trimethoprim-sulfamethoxy- pyridazine [242]	2000	Characterization of polymorphs and hydrate form						\checkmark			\checkmark	\checkmark				\checkmark		
Troglitazone [243]	2008	Drug (crystalline versus amorphous) distribution in solid dispersion			\checkmark											\checkmark		
Venlafaxine HCl [244]	2009	Drug–excipient compatibility in physical mixture	\checkmark					\checkmark			\checkmark	\checkmark			\checkmark			
Venlafaxine HCl [245]	2005	Characterization of polymorphs	\checkmark					\checkmark			\checkmark	\checkmark		\checkmark				
Vinpocetine [246]	2003	Characterization of drug-polymer (binary and ternary) solid dispersion						\checkmark			\checkmark				\checkmark			
Zidovudine [33]	2003	Drug-excipient compatibility studies						\checkmark			\checkmark	\checkmark						

N. Chieng et al. / Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 618-644

Table 3

Selected studies involving crystal polymorphism and polymorphic transformations.

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Acetaminophen [52]	2002	Polymorphic transformation of form III to form II upon heating above 118°C	In situ heating/cooling	VT-FT-IR and DSC	
Alprazolam [50]	2007	Polymorphic transformation of alprazolam form I to form III from melt-crystallization	In situ heating	DSC, PLM, PXRD, VT-PXRD, SCXRD	Rietveld method was use to analyze PXRD data
API not specified [247]	2001	Polymorphic transformation of drug from form B to form D The intra-agglomerate pore volume changed from a 'multilevel' and high variation to a single with less variation pore type (form B showed a larger specific surface area than samples from form D)	Milling and accelerated stability testing conditions	SEM, porosimetry and BET surface area	The use of texture properties to determine solid-state changes of AP
Carbamazepine [44]	2005	Polymorphic transformation of carbamazepine form III to form I	In situ heating	VT-TPS and DSC	
Chlorpropamide [175]	2007	Polymorphic interconversion between form A and C of chlorpropamide during processing	Compaction, milling and cryo-milling	PXRD, Raman probe and DSC	Quantitative analysis was carried out in this work
Cilostazol [248]	2002	Crystallization of a metastable polymorph B/C during heat-cool cycle, polymorphic transformation from form B and C to form A during dissolution study	Heat-cool cycle, dissolution study	DSC, hot-stage light microscope, PXRD, FT-IR and SCXRD	HPLC was also used in the study
Famotidine [46]	2008	Polymorphic transformation of famotidine form B to intermediate B* before converting to form A during heating	Compact compression and heating in DSC	Dispersive Raman and DSC	Quantitative analysis performed using curve fitting method; Gaussian-Lorentzian function was used for the data analysis (i.e., iterativ fits to yield curves with a minimum standard error; the fractional area from each curve corresponds to the amount of the solid of interest)
Famotidine [51]	2006	Polymorphic transformation of famotidine from form B to form A via grinding	Milling	DSC, FT-IR and VT-FT-IR	
Fananserine [61]	2008	Polymorphic transformation of fananserine from form III or IV to metastable form I when milled at 25 °C; milling at 0 °C resulted in amorphous fananserine	Milling	DSC and PXRD	
Flufenamic acid [34]	2007	Polymorphic transformation of flufenamic acid below or above the transition temperature between form III and form I	Slurry experiment at various temperatures	Raman probe	Univariate analysis was employed to analyze the Raman spectra
Flufenamic acid [35]	2008	Crystallization of flufenamic acid metastable form V, and interface-mediated transformation from form V to form I, II and III (stable forms)	Crystallization	PXRD, DSC, FT-IR (ATR) and ss-NMR	Elemental microanalysis was used in this study
L-Glutamic acid [36]	2006	Solvent-mediated polymorphic transformation of L-glutamic acid α to β form	Crystallization	PXRD and PLM	
Mebendazole [43]	2005	Polymorphic transformation of mebendazole from form C to form A at high temperature	In situ heating	PXRD, VT-PXRD, DRIFTS and DSC	
Nitrofurantoin [209]	2007	Two polymorphic forms and a monohydrate of nitrofurantoin differentiated using hyphenated NIR-Raman spectroscopy (combined with PCA) and TPS	Crystallization from acetone-water mixtures	NIR probe, Raman probe, TPS and PXRD	PCA was used to analyze NIR and Raman data; hyphenated NIR–Raman spectroscopy was used in this study

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Ranitidine HCl [249]	2004	In-depth characterization of ranitidine HCl polymorphic form I and form II, tautomerism of the two polymorphs	Solvent-mediated crystallization	SCXRD, SEM, hot-stage light microscope, DSC, FT-IR, ss-NMR and PXRD	
Ranitidine HCl [47]	2006	Polymorphic transformation of ranitidine HCl form 1 to form 2 via the amorphous phase	Milling	PXRD, DSC, ss-NMR and DRIFTS	
Ritonavir and compound A [250]	2005	Screening of stable polymorphs, polymorphic transformation of both ritonavir and compound A from metastable to stable form	Crystallization from suspension	PXRD, Raman probe	PCA was used to analyze Raman data
Salmeterol xinafoate [224]	2008	Polymorphic transformation of salmeterol xinafoate form I to form II	Crystallization, <i>in situ</i> heating in DSC	PXRD, DSC, FT-Raman, Raman microscope	Simultaneous <i>in situ</i> Raman-DSC analysis was carried out in this study
Salmeterol xinafoate [45]	2008	Solvent/antisolvent crystallization resulted in salmeterol xinafoate form I, polymorphic transformation or inhibition of salmeterol xinafoate form II to form I during milling with PEG6k	Crystallization from solvent/anti-solvent, milling	PXRD, DSC and hot-stage PLM	Hot-stage-PLM: isolation of salmeterol xinofoate form II seeds of form I/form II mixture by melting salmeterol xinofoate form I at 131 °C. At 131 °C, form II crystals appear birefringent against droplets of molten form I
Sulfamerazine [251]	2008	Inhibition of polymorphic transformation from form I to form II using small amount of impurities	Crystallization	Raman probe, PXRD and SEM	
Sulfathiazole [230]	2003	NIR spectroscopy was found to be useful for polymorph screening. Various polymorphic forms of sulfathiazole were observed, and the processing-induced transformations were identified	Crystallization, milling (planetary ball mill) and compression	PXRD, VT-PXRD, DSC, TGA, FT-NIR	PCA was used to analyze the NIR spectra
Sulfathiazole [252]	2009	Polymorphic transformation of sulfathiazole from form III to form I, and characterization of transition temperature	In situ heating in DSC	PXRD, DSC, FT-NIR, NIR probe and Raman probe	Simultaneous <i>in situ</i> Raman-DSC analysis was carried out in this study
Sulfathiazole [49]	2010	Sulfathiazole was found to crystallize as mixture of polymorphs, despite the recipe for pure polymorph crystallization was followed	Crystallization from organic solvent	DSC and hot-stage light microscope	Use of light intensity (from light microscopy) as an alternative tool for qualitative analysis
Tetrapeptide [48]	2004	Polymorphic transformation of tetrapeptide form B to form D	Accelerated stability testing conditions (i.e., temperature and humidity)	DSC, PXRD, DVS and IMC	
Theophylline [37]	2006	Polymorphic transformation of theophylline form II to form I	In situ heating	Terahertz time-domain spectroscopy, IR and PXRD	
Tolbutamide [253]	2006	Selective crystallization of tolbutamide form IV in cyclodextrin solution, while crystallization of form I was observed in the absence of cyclodextrin solution	Crystallization from solvent	PXRD and light microscope	

Thermal methods also provide fundamental information on polymorphic systems. The by far most popular thermal technique in characterizing polymorphs is DSC. Physicochemical properties such as the transition temperature (i.e., to determine enantiotropic/monotropic relationships between polymorphic forms) or melting temperature can be easily observed as an exothermic/endothermic event in the DSC thermograms; for instance, the polymorphic transformation of mebendazole form C to form A (around 205–220 °C) [43], melt-crystallization/transformation of carbamazepine form II to form I (130–160 °C) [44] and of salmeterol xinofoate form I to form II (121–130 °C) [45]. Quantitatively, DSC combined with Gaussian–Lorentzian curve–fitting has been used to quantify binary mixtures of famotidine polymorphs after various compression treatments [46]. Clearly, DSC is an invaluable tool when it comes to understanding the thermal properties of solid forms. However the interpretation of the thermogram may become difficult when two or more thermal events overlap or are very close to each other. The reported onset of the melting temperatures for ranitidine HCl form 1 and form 2 ranges between 134 and 140 °C and 140 and 144 °C, respectively [47]. Evidently, employing another technique such as PXRD, FT-IR or Raman spectroscopy may vastly increase the confidence in differentiating the two polymor-

Table 4

Selected studies involving amorphization and recrystallization.

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Acetaminophen (paracetamol) [68]	2008	Crystallization of amorphous acetaminophen to form III followed by polymorphic transformation to form II	In situ heating	PXRD, Raman microscope, DSC	Chemometrics used in the analysis, simultaneous Raman-DSC was used in this study
Cephalothin [73]	2005	Crystallization of cephalothin from a tert-butyl alcohol-water cosolvent system during lyophilization	In situ freeze drying	DSC, PXRD, VT-PXRD (equipped with vacuum stage) and SEM	Cuantitative analysis carried out using gas chromatography
Chlorpropamide, carbamazepine and tolbutamide [254]	2006	Study of partial disorder on tablet surfaces of three APIs	Tablet compaction and exposure to water-ethanol environment to facilitate crystallization	DSC, grazing-angle PXRD, density measurement	Polymorphic transition from form A to form C observed in chlorpropamide tablet
Dexketoprofen Trometamol [255]	2006	Amorphization of polymorph A or B during granulation process	Wet granulation	NIR, PXRD and DSC	Multivariate curve resolution-alternating least squares used to analyze the NIR spectra
toricoxib [66]	2007	Stabilization of amorphous etoricoxib by drug-gelucire [®] or drug-lipid matrix formulation	Spray drying and granulation	TGA, DSC and PXRD	
ndomethacin [74]	2006	Crystallization and transformation to α-indomethacin from amorphous and γ-indomethacin	Pressure-induced amorphization and crystallization (±solvent)	PXRD, DSC, SEM and ss-NMR	Quantitative analysis carried out in this work
ndomethacin [76]	2007	Quantification of ternary mixtures of crystalline (α and γ form) and amorphous indomethacin, using Raman and NIR spectroscopy in combination with multivariate modeling	Precipitation and filtration and quench cooling	PXRD, DSC, Raman probe and FT-NIR	Potential sources of error when using the vibrationa spectroscopy methods wa also investigated
ndomethacin and carbamazepine [70]	2009	Crystallization of amorphous indomethacin to α-form during dissolution, crystallization of amorphous carbamazepine to form I, followed by polymorphic conversion from form I to the dihydrate	Dissolution of compacts	Raman probe and PXRD	Semi-quantitative partial least squares discriminant analysis was used to follor the conversion
ndomethacin, nifedipine, ketoconazole, flopropione and felodipine [63]	2006	Study between predicted and experimental crystallization onset times above and below Tg	Quench-cooling	DSC, IMC, PLM	
ndomethacin-ranitidine HCl [65]	2008	Amorphization of indomethacin and ranitidine HCl binary system at various ratios	Co-milling	PXRD, DSC and DRIFTS	
actose, trehalose, mannitol, sorbitol and budesonide [256]	2007	Amorphization during milling of pure crystalline compound below the T_g of corresponding liquid, or co-milling of two miscible components	Milling	PXRD and DSC	Polymorphic transformation (stable to metastable) occurred during milling of pure crystalline compounds above the T_g of corresponding liquid
Microcrystalline cellulose, indomethacin and piroxicam [23]	2006	Differentiating true amorphous from nanocrystalline drugs using PDF analysis, better understanding of structural differences in amorphous samples prepared by various methods	Quench cooled and cryo-milling	PXRD	PDF, Rietveld method and total scattering method to analyze PXRD data
Moxalactam [62]	2007	The effect of annealing on the chemical stability of amorphous moxalactam–mannitol systems below the Tg	Freeze dried	Karl Fisher, PLM, PXRD, DSC and IMC	Degradation study of moxalactam using reverse phase HPLC method
Naproxen-cimetidine [64]	2009	Amorphization of naproxen and cimetidine binary system at various ratios, and improvement of dissolution of both drugs	Co-milling	PXRD, DSC and FT-Raman	Dissolution and stability studies were carried out

Table 4(Continued)

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Paracetamol (acetaminophen)[69]	2008	Crystallization of quench cooled amorphous paracetamol	Thermal history prepared by various cooling rates, storage temperature and time, headspace environment and heating rate	DSC, Hot stage-PLM and PXRD	
Ranitidine HCl [59]	2008	Crystallization of amorphous ranitidine HCl to form 1 and form 2 under various storage conditions and seeding	Cryo-milling	PXRD and DSC	
Saquinavir [57]	2008	Differences in amorphous saquinavir samples, heat/cool cycle was found to further increase the disorder of amorphous saquinavir compared to the milling method	Milling and heat/cool cycle	PXRD, PLM, SEM, Karl Fisher, DSC, TGA, FT-NIR and FT-IR (ATR)	PXRD and Raman spectroscopy combined with PDF and PCA, respectively, were found to be useful to characterize different levels of disorder
Simvastatin [60]	2009	Quench-cooled amorphous simvastatin crystallizes faster than cryo-milled	Quench-cooling, cryo-milling and stability studies	PXRD, DRIFTS, PLM and DSC	Similar study was carried out in [257]
Simvastatin and indomethacin [226]	2010	Thermal, spectroscopic and diffractometric study of disordered solid materials	Ball milling (cold and cryo-mill) and quench cooling	PXRD, DSC, FT-Raman and HPLC	PXRD, Raman spectroscopy and DSC were used to detect various solid-state forms, PCA and PLS to perform quantitative analysis
Stavudine [67]	2009	Crystallization of amorphous stavudine to form III (hydrate) or form II (anhydrous), when exposed to temperature, in the absence or presence of moisture	Quench-cooling, evaporation-coating and stability testing	PXRD, VT-PXRD, DSC, TGA and SEM	

phic forms (Fig. 1). In one interesting study, the use of isothermal microcalorimetry (IMC) to study the polymorphic transformation of crystalline tetrapeptide form B to form D was reported. Vernuri et al. were able to demonstrate the rate of a transformation of tetrapeptide form B to form D under various temperature and humidity conditions by using the shape of the exothermic event obtained by IMC. DSC, PXRD and DVS were also used to support the findings in this study [48].

Visual observation using light microscopy (with or without polarizers) has also been shown to be a useful tool in screening of various solid-state forms, provided there are distinctive differences in morphology or crystal habit between the polymorphic forms. When combined with a variable-temperature stage, polymorphic transformations as a function of temperature can be visualized in real time. An example of such an application can be found in [49], where the polymorphic transformation of sulfathiazole form II to form I was observed (Fig. 2). The combination of a variable temperature stage with other analytical instruments such as PXRD [50], IR spectroscopy [51,52] and Raman and NIR [53,54] has also been shown to be an invaluable tool in polymorphic transformation studies.

3.2. Studies involving amorphization and recrystallization

The occurrence of amorphous drug and crystallization of amorphous drug during pharmaceutical processing such as grinding/milling, granulation, freeze drying and spray drying is an often-observed phenomenon (Table 4). Polarized light microscopy (PLM) offers a simple and quick way to detect amorphous material by observing (the lack of) birefringence in a sample. PXRD distinguishes an amorphous material from a crystalline phase based on the broad and diffuse maxima in the diffraction pattern of an amorphous material. Alternatively, pair distribution function (PDF) analysis of PXRD diffractograms can be used to determine the different types of disordered systems, as shown in a study by Bates et al. [23]. PDF analysis is a statistical mechanics method used to extract structure-related information (i.e., inter-atomic distances) from the whole PXRD pattern. The output of PDF analysis, denoted G(r), calculated from two series of equations [55], is a measure of the probability of finding a neighbouring atom as a function of distance from an initial atom [23,56]. According to these researchers, nanocrystalline material is characterized by a matching but decaying inter-atomic distance peak (PDF probability versus distance plot) between initial crystalline and the disordered material; in a true amorphous solid, significant differences in the PDF traces in comparison to the crystalline form are observed [23]. Heinz et al. employed the PDF analysis to better characterize and understand the structural differences in amorphous saquinavir prepared by different methods (Fig. 3) [57].

While PXRD, PLM and spectroscopic methods are often used to detect the absence of crystalline species, the most popular direct method to detect amorphousness is DSC (Table 4) [58]; for example in the study of cryo-milled ranitidine HCl form 1 and 2 [59] and simvastatin [60]. Analysis of an amorphous phase using DSC should reveal a glass transition temperature (T_g) and/or a crystallization temperature (T_c) , whereas only a melting temperature would be expected for a nanocrystalline material (even though amorphous and nanocrystalline materials may have similar diffraction patterns [23]). Other thermal events such as the glass transition temperature and crystallization temperature of amorphous materials may also play a role in understanding polymorphic transformations, especially when the transformation between polymorphs occurs via an amorphous phase [47,61]. Using thermal methods (DSC/MTDSC and IMC) combined with Kohlrausch-William-Watts (an empirical equation used to describe the summation of exponential relaxation/decay functions) or 'modified stretch exponential' curve-fitting methods, the kinetic properties such as the relaxation dynamics, τ^{β} , of amorphous drugs were studied. In two

Table 5

Selected studies involving solvate systems.

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Acrinol [88]	2010	Dehydration of acrinol monohydrate to acrinol anhydrous AI form before transforming to acrinol AII	Heating	TGA, DTA, DSC, DVS and PXRD	Rietveld method was used to analyze PXRD data
Ampicillin, nitrofurantoin and compound A [78]	2008	(anhydrous) form Characterization of ampicillin trihydrate, nitrofurantoin monohydrate and compound A monohydrate	Crystallization of hydrate from aqueous solution	PXRD, TGA, DTA and DRIFTS	DTA/TGA data not presented in the publication
Baclofen [165]	2007	Interconversions between baclofen forms	Crystallization from water, wet massing experiments	PXRD, DSC, TGA, FT-IR, FT-NIR, Raman probe, light microscopy, SEM and DVS	
Caffeine, carbamazepine and sulfaguanidine [258]	2008	Influence of polymeric excipients in inhibiting anhydrous to hydrate transformation in slurry experiments	Slurry hydration with polymer of interest	Raman probe	Quantitative analysis carried out in this study, cross-linked poly(acrylic acid), HPMC and PVP were found to be good inhibitor
Carbamazepine [172]	2009	The effect of biorelevant dissolution media on solid-state transformations during dissolution	Dissolution studies using simulated GI fluids	Raman probe, PXRD and SEM	
Carbamazepine [173]	2007	The effect of excipients on solid-state transformations upon dissolution	Dissolution studies of carbamazepine compacts	SEM and PXRD	
Carbamazepine [82]	2007	Conversion of carbamazepine form III to the dihydrate form	Dissolution studies	PXRD, FT-Raman, SEM and TGA	
Carbamazepine [83]	2008	Conversion of carbamazepine forms to the dihydrate form, visualized using PCA and PLS	Solvent-mediated hydrate formation	FT-Raman	
Carbamazepine [93]	2006	Solution-mediated transformation of carbamazepine anhydrous form III to carbamazepine dihydrate in ethanol-water system	Crystallization	Raman probe, PXRD, PLM and SEM	Quantitative analysis was carried out in this work
Carbamazepine, piroxicam, theophylline and α-lactose monohydrate [199]	2007	Anhydrous and hydrated forms of crystalline pharmaceuticals characterized using TPS, monitoring of dehydration process of theophylline with <i>in situ</i> TPS	Heating	PXRD and TPS	
Citric acid [92]	2008	Solvent-mediated transformation from citric acid anhydrous to citric acid monohydrate	Solvent-mediated hydrate formation	Raman probe and FT-Raman	Quantitative analysis carried out in this study
Erythromycin [80]	2006	Dehydration of erythromycin dihydrate to anhydrous form	In situ heating	VT-PXRD, DSC, hot-stage light microscope and FT-IR	
Erythromycin [89]	2006	Transformation of erythromycin dihydrate to isomorphic dehydrate form was observed. Upon further heating, the isomorphic dehydrate melts and crystallizes as anhydrous erythromycin	In situ heating	VT-PXRD, hot-stage Raman, DSC and TGA	
Naproxen [86]	2005	Dehydration of dihydrate sodium naproxen to monohydrate sodium naproxen	Storage under low humidity and heating in oven	PXRD, TGA, SEM and PLM	
Piroxicam [259]	2007	Dehydration study of piroxicam monohydrate in compacts: comparison between TPS, Raman and NIR spectroscopy	Different sample preparation methods	TPS, Raman, NIR, VT-PXRD and TGA	PCA was used to analyze the spectra
Piroxicam and carbamazepine [53]	2008	Dehydration of piroxicam monohydrate and carbamazepine dihydrate to respective anhydrous forms	Isothermal dehydration	Karl Fisher, PXRD, VT-PXRD, TGA, NIR and Raman probe, and hot-stage NIR/Raman	Quantitative analysis carried out in this study

Table 5 (Continued)

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Roxithromycin and dexamethasone [87]	2003	Conversion of roxithromycin-acetonitrile solvate to roxithromycin monohydrate, transformation of dexamethasone- dimethylsulfoxide solvate to dexamethasone sesquihydrate	Solvent-mediated hydration and storage conditions	PXRD, DSC, SEM, ss-NMR and Hot stage light microscope	
Siramesine HCl [81]	2009	Solution-mediated monohydrate formation from anhydrous form of siramesine HCl	Solvent-mediated hydration	SEM, BET surface area, PXRD, light microscope, Raman microscope	Dissolution test was also carried out in this study
Sodium dihydrogen phosphate and theophylline [90]	2003	The stepwise dehydration was observed by in-line NIR spectroscopy; the first step is the evaporation of water followed by dehydration of the crystal hydrates	Fluid bed dryer	PXRD and diffuse reflectance NIR	Second derivative transformations with 13-point Savitzky–Golay smoothing was used to process the NIR spectra
Sulfaguanidine, cromolyn sodium, ranitidine HCl [94]	2007	Hydrate formation of APIs successfully characterized using combined DVS-Raman spectroscopy method	Samples used as received	DVS and Raman probe	Simultaneous DVS and Raman spectroscopy study PCA was used to analyze Raman spectra
Theophylline [21]	2007	Dehydration/hydrate formation between theophylline monohydrate and anhydrous form	Vapour sorption at various temperature and humidity	FT-Raman and TGA	Lorentzian or Gaussian functions were used on the Raman spectra
Theophylline [260]	2004	Dehydration of theophylline monohydrate to metastable anhydrous theophylline (form 1*) before transformation to the stable form 1	Fluid-bed drying	PXRD, VT-PXRD and FT-NIR	Peak integration of PXRD diffractograms was used for quantitative analysis
Theophylline [79]	2001	Dehydration of theophylline monohydrate and polymorphic conversion of form I to form II	Compression and storage in accelerated stability conditions	PXRD and Karl Fisher	Texture analyzer was used to study the crushing strength
Гheophylline [84]	2008	Theophylline hydrate formation from anhydrous form during dissolution study using rotating disc and channel flow cell dissolution methods	Hydrate formation during dissolution	Raman probe, PXRD and SEM	
Theophylline [85]	2003	The effect of α -lactose monohydrate and microcrystalline cellulose on the transformation of theophylline anhydrous to monohydrate form	Wet granulation	Karl Fisher, PXRD, FT-NIR, Raman probe and SEM	
Theophylline [91]	2005	Transformation of anhydrous theophylline to monohydrate form	Slurry hydration, wet granulation	Raman/NIR probe and SEM	Quantitative analysis was carried out in this work
Theophylline and carbamazepine [239]	2006	Stability study of hydrate-anhydrate systems in the presence of hygroscopic and nonhygroscopic excipients at various storage conditions	Vapour-mediated transformation, effect of seeding and excipients	FT-Raman, PXRD and hot-stage and humidity-controlled light microscope	
Theophylline and nitrofurantoin [237]	2006	Hydrate formation during dissolution	Dissolution in a channel flow apparatus	Raman probe, PXRD and SEM	

examples, the stability and crystallization onset of moxalactam [62] and three other APIs (indomethacin, flopropione and felodipine) [63] were found to correlate with the relaxation dynamics or molecular mobility. A larger τ^{β} value indicates a lower molecular mobility or slower crystallization onset. Annealing was found to increase the τ^{β} value [62]. Employing combined analytical methods (PXRD, DSC with IR/Raman spectroscopy or TGA), amorphization of binary mixtures (API–API or API–polymer) were also described for naproxen–cimetidine [64], indomethacin–ranitidine HCl [65] and etoricoxib–polyglycolized glycerides (Gelucire[®]) [66] systems.

Monitoring of the recrystallization of amorphous API has also been illustrated using various solid-state analytical techniques. A single scan using PXRD or spectroscopic techniques not only can differentiate between crystalline and amorphous materials, but also, as mentioned, can be used to identify specific polymorphic form(s) recrystallized from the amorphous state [67–69]. The use

Table 6

Selected studies involving cocrystals.

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
AMG 517 with various cocrystal formers [261]	2008	AMG 517 with various cocrystal formers at 1:1 ratio was discovered and characterized	Slow cooling of saturated solution	DSC, TGA, PXRD, ss-NMR, DVS, and SCXRD	Cocrystal formers used were L(+)-lactic acid, <i>trans</i> -cinnamic acid, glutaric acid, <i>trans</i> -2-hexenoic acid, 2-hydroxycaproic acid, glycolic acid, 2,5-dihydroxybenzoic acid L-(+)-tartaric acid, benzoic acid and sorbic acid
Caffeine with 1-, 3-, 6-hydroxy-2-naphthoic acid [112]	2007	Characterization of known imidazole-carboxylic acid synthon (i.e., caffeine-naphthoic acid) and an unusual carboxylic acid heterosynthon (i.e., caffeine-naphthoic acid-naphthoic acid-caffeine) cocrystal	Solution-mediated crystallization and slow evaporation	FT-IR, PXRD and SCXRD	
Carbamazepine-nicotinamide [100]	2009	Understanding the various thermodynamic phases of carbamazepine and carbamazepine-nicotinamide cocrystal during cocrystal formation	Cooling crystallization	PXRD, SEM and light microscope	
Carbamazepine–nicotinamide [107]	2009	Formation kinetics and stability of carbamazepine-nicotinamide cocrystals prepared from carbamazepine dihydrate, form I and form III	Milling	PXRD and DSC	PCA of PXRD was used to follow the cocrystal formation, stability study carried out at various storage conditions
Carbamazepine-nicotinamide [115]	2007	Formation of carbamazepine–nicotinamide cocrystal occurs via the amorphous phase	In situ heating	DSC, hot-stage PLM, PXRD, hot-stage Raman microscope	
Carbamazepine-saccharin [109]	2006	Formation of carbamazepine-saccharin is mediated by an amorphous phase	Milling, cryo-milling and various storage conditions	FT-IR (ATR), PXRD and DSC	
Carbamazepine-saccharin and carbamazepine-nicotinamide [101]	2008	Formation of two polymorphic forms of carbamazepine-saccharin and carbamazepine-nicotinamide cocrystal	Melt-crystallization	PXRD and FT-IR	
Compound 1-glutaric acid [110]	2006	Formation and stability of compound 1-glutaric acid cocrystal	Co-evaporation with seeding	DSC, PXRD, Raman probe and SCXRD	
Ethenzamide-3,5- dinitrobenzoic acid [262]	2010	Formation of two polymorphic forms (I – stable, II – unstable) of ethenzamide–3,5- dinitrobenzoic acid cocrystals and various cocrystal solvates similar to form II	Crystallization from solution and milling	SCXRD, PXRD, DSC, TGA, hot-stage PLM and ss-NMR	The authors also published similar work using various cocrystal formers; ethenzamide–saccharin [263], ethenzamide–gentisic acid [264] and ethenzamide–ethylmalonid acid [265]
Fluoxetine HCl-succinic, benzoic and flumaric acid [266]	2004	Formation of fluoxetine HCl with succinic acid or benzoic acid or flumaric acid cocrystal based on crystal engineering approach	Co-evaporation	PXRD, DSC, TGA, FT-Raman, DVS and SCXRD	· · · ·
lbuprofen, paracetamol, salicylic acid, fenbufen, flurbiprofen, ketoprofen and piracetam [116]	2008	Corrystal formation of ibuprofen (R/S and S), salicylic acid, flurbiprofen and fenbufen with nicotinamide	<i>In situ</i> heating on hot-stage PLM and co-evaporation with or without seeding	PXRD, hot-stage PLM and SCXRD	
Indomethacin-saccharin [97]	2009	Different supercritical fluid methods to prepare indomethacin-saccharin cocrystals	Supercritical fluid methods	DSC, PXRD, FT-Raman and SEM	Particle size analysis carried out in this study
Indomethacin-saccharin or L-aspartic acid [113]	2008	The use of NIR and Raman spectroscopy for cocrystal screening	Liquid-assisted milling and cocrystallization from solution	PXRD, DSC, ss-NMR, FT-Raman and FT-NIR	PCA was used to analyze the NIR spectra

Table 6 (Continued)

API/sample	Year	Description/results of the study	Processing method(s)	Analytical technique(s)	Comments
Lamivudine–zidovudine [104]	2008	Formation of lamivudine–zidovudine 1:1 cocrystal followed by hydration of the cocrystal	Co-evaporation	SCXRD	Other combinations using various drugs and co-crystal formers were also studied
Norfloxacin saccharinate-saccharin dihydrate [106]	2008	Formation of norfloxacin salt with salt former (dihydrate form) cocrystal	Liquid-assisted grinding and cooling crystallization	DSC, PXRD and SCXRD	
Paracetamol, cholesterol, caffeine, ibuprofen and lactose [98]	2009	Cocrystal formation of (a) paracetamol-cholesterol, (b) caffeine-cholesterol, (c) cholesterol-lactose and (d) paracetamol-caffeine	Milling and supercritical fluid processing	SEM and PXRD	Semi-quantitative analysis was carried out in this study
Piracetam-dihydrobenzoic acid isomers [108]	2010	The effect of isomerism of cocrystal former on the physicochemical properties of cocrystals	Co-evaporation	PXRD, DSC, FT-IR (ATR) and SCXRD	
Spironolactone-saccharin [102]	2010	Formation of anhydrate and hemihydrates of spironolactone-saccharin. Characterization reviewed that both forms have the same crystal lattice	Grinding (mortar and pestle) (neat and liquid-assisted) and cooling crystallization	PXRD, SCXRD, TGA, DSC, DVS and hot-stage PLM	
Theobromine-oxalic acid [111]	2008	Real-time monitoring of theobromine-oxalic acid cocrystal formation during milling	Milling	Terahertz time-domain spectroscopy	
Theophylline, caffeine with citric acid [103]	2007	Formation of anhydrous and hydrate theophylline-citric acid cocrystal and anhydrous caffeine-citric acid cocrystals using anhydrous/monohydrate forms of theophylline, caffeine and citric acid	Milling (neat and liquid-assisted)	PXRD and SCXRD	
Tiotropium fumarate-fumaric acid salt cocrystal [105]	2009	Formation of a stable tiotropium fumarate-fumaric acid salt cocrystal at 2:1 salt ratio	Solvent/slurry crystallization	PXRD, SCXRD, DSC, FT-IR and dispersive Raman	

of on-line spectroscopic techniques (i.e., Raman and NIR) is an invaluable tool to provide rapid and non-invasive monitoring of processing-induced amorphization or crystallization. In a recent study, Savolainen et al. used in-line Raman spectroscopy (confirmed by PXRD), combined with partial least squares-discriminant analysis (PLS-DA) to monitor the crystallization processes of amorphous indomethacin (to the crystalline α -form) and amorphous carbamazepine (to form I followed by polymorphic conversion to the dihydrate form) in a dissolution study [70]. Spectroscopic monitoring of solid-state changes during a freeze-drying process has been reported [71,72], as well as *in situ* simulation of freeze-drying cycles in a variable temperature powder X-ray diffractometer (VT-PXRD) equipped with a vacuum sample stage [73].

The use of solid-state analytical methods to quantify the amount of amorphous phase in multiple-component solid mixtures has also been demonstrated; for example, PXRD [74,75], NIR [76] and Raman spectroscopy [75–77] have been used for this purpose. In most cases multivariate analysis was used. One study also looked at potential sources of error when using the vibrational spectroscopy methods [76].

3.3. Studies involving solvate systems

Studies involving transformations of solvates are summarised in Table 5. Similar to polymorphs, solvates often have unique spectra, diffraction patterns, or thermograms and thus can be easily distinguished from other solvate species or anhydrous states using the respective methods. When the distinctive morphology of a solvate/hydrate is known, visual observation (e.g., by PLM) may offer a simple and quick method for identification. Full characterization of hydrates such as ampicilin trihydrate, nitrofurantoin monohydrate and 'compound A' monohydrate has been described using PXRD, TGA, differential thermal analysis (DTA) and diffuse reflectance infrared transmission spectroscopy (DRIFTS) [78]. Dehydration experiments of piroxicam monohydrate [53], carbamazepine dihydrate [53], theophylline monohydrate [79] and erythromycin dihydrate [80] to their respective anhydrous forms, and hydration experiments (including slurry-crystallization and dissolution studies) of anhydrous siramesine HCl [81], carbamazepine form I or III [82,83] and anhydrous theophylline [84,85] to their respective mono- or di-hydrate forms have also been demonstrated. Examples of transformations between two solvates (e.g., naproxen sodium dihydrate to monohydrate) [86] and solvent exchange (e.g., roxithromycin acetonitrile to roxithromycin monohydrate and dexamethasone dimethylsulfoxide to dexamethasone sesquihydrate) [87] have also been reported.

Characterization of the dehydration transition temperature is usually carried out using two complementary methods, DSC and TGA/DVS (endothermic event in the DSC and weight loss in TGA or DVS). One advantage of the gravimetric methods (TGA and DVS) is that the weight loss (or weight gain during hydrate formation) can be used to calculate the stoichiometric water content in the API. Using DSC and TGA, it was found that arcinol monohydrate dehydrates between 70 and 120 °C and a total weight loss of 5.5% (w/w), equivalent to one molecule of water or monohydrate was found [88]. In another study on erythromycin dihydrate, TGA showed that two molecules of water were lost simultaneously in the pro-

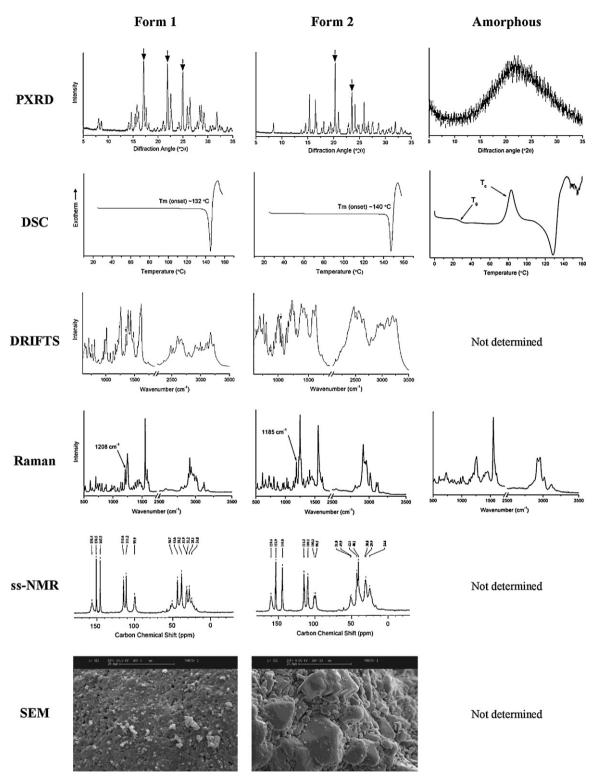
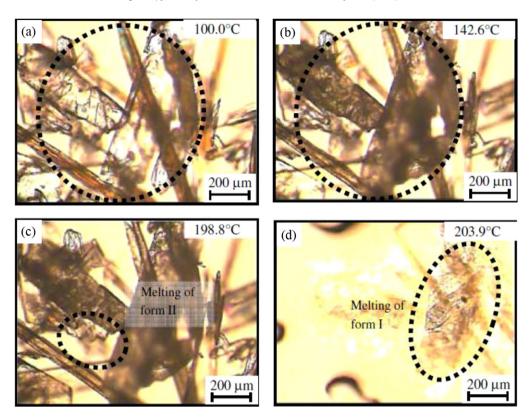



Fig. 1. Solid-state characteristics of ranitidine hydrochloride form 1, form 2 and amorphous form characterized by PXRD, DSC, DRIFTS, Raman, ss-NMR and SEM. Arrows indicate characteristic peaks of forms 1 and 2. Modified from [47].

cess between 40 and 100 °C and an isomorphic dehydrate form (e.g., very small changes in the PXRD pattern due to dehydration) was produced [89]. Non-stoichiometric hydrates or stoichiometric channel hydrates sometimes show only very small changes in their diffraction pattern due to the varying hydration state, but a TGA or DVS run clearly shows the weight loss or gain and therefore these methods provide valuable complementary information on the solid state of the sample.

The use of on-line Raman and NIR spectroscopy to monitor and quantify phase transformations during drying has also been described. In a fluid-bed drying study, Räsänen et al. used online NIR spectroscopy to monitor the stepwise dehydration of theophylline monohydrate by following the free water content and lattice-bound water. It was found that drying at a temperature below 40 °C resulted in the evaporation of free water, while drying above 40 °C induced dehydration of lattice-bound water

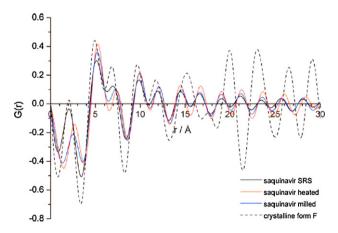
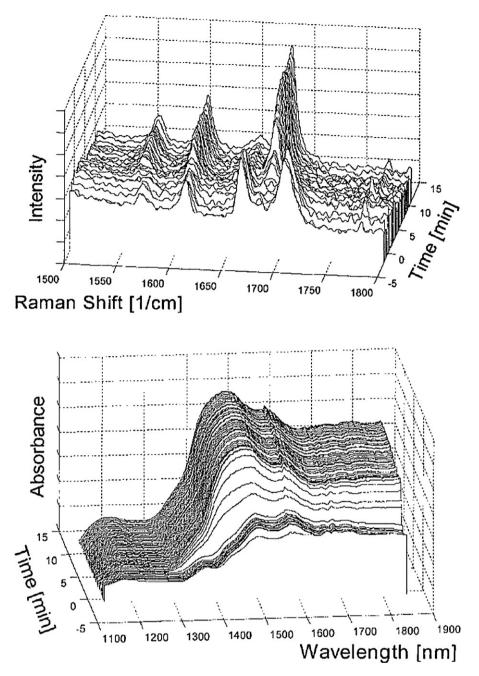


Fig. 2. Image of sulfathiazole crystals obtained during hot stage-light microscopy analysis taken at (a) 100.0°C, (b) 142.6°C, (c) 198.8°C and (d) 203.9°C. Note the optical property changes (i.e., reduce brightness and light intensity) comparing figure (a) and (b) (dotted circle region), suggesting a polymorphic transformation of form II to form I. Reprinted with permission from [49]. Copyright 2009, Springer Science+Business Media.


from theophylline monohydrate [90]. On the other hand, a wet granulation study using the same drug model found that using in-line Raman spectroscopy, but not NIR spectroscopy, it was possible to monitor the hydrate formation induced by the aqueous granulation liquid. The reason for this was that the presence of a broad water band at 1450 cm⁻¹ in the NIR spectra, made it impossible to follow the transformation kinetics of anhydrous theophylline (Fig. 4) [91]. On-line Raman spectroscopy was also used in two other solution-mediated crystallization studies, citric acid and carbamazepine, where the crystallization of citric acid monohydrate and carbamazepine dihydrate was monitored and quantified. Multiplicative effects correction (MEC) and bivariate analysis were used in the quantitative analysis of citric acid suspension [92] and carbamazepine [93], respectively. Clearly, this reiterates that Raman spectroscopy is the preferred method to monitor hydrate/dehydration process in a water rich environment as it is only sensitive towards the structural changes in the API molecule, while NIR spectroscopy is perhaps more useful in characterizing hydrate crystals and free water in a dry environment. More recently, hyphenated techniques have been shown to allow fast and simultaneous solid phase analysis. Gift et al. employed DVS-Raman spectroscopy to study water-solid interactions, stoichiometric and non-stoichiometric hydrate formation of sulfaguanidine and cromolyn sodium, respectively, and the deliquescence properties of ranitidine HCl [94].

3.4. Studies involving cocrystals

Cocrystals are a long-known class of solids with unique physical properties (diffraction pattern, spectra, thermal properties and crystal habit) different from the parent solids. However, it was not until less than a decade ago, when research in this area re-emerged as pharmaceutical scientists are trying to seek for alternative solutions to improve the physical properties of APIs, e.g., stability, dissolution and bioavailability [95]. This is evident by the dramatic increase in the number of discoveries in the area of cocrystals [95]. Recent publications and reviews have presented some fascinating examples of pharmaceutical cocrystals including cocrystal polymorphs, useful guidelines for their design and synthesis as well as characterization methods used to better understand the physical properties of cocrystals [7,96]. To date, it is well accepted that the formation of cocrystals is mostly based on homosynthon (i.e., acid–acid) or heterosyn-

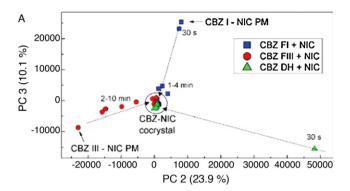

Fig. 3. Pair distribution function transforms of the PXRD data of crystalline saquinavir form F, saquinavir samples SRS from the manufacturer, milled saquinavir, and heated saquinavir showing molecular packing distances up to 30 Å. Note that the decaying height and shift of peaks of the processed samples (SRS, heated and milled) compared to the parent crystalline form (form F) are characteristics of true amorphous materials. Reprinted with permission from [57]. Copyright 2008, American Chemical Society.

Fig. 4. Waterfall plot of Raman spectra collected during granulation showing the transformation of anhydrous theophylline with characteristic peaks at 1664 and 1707 cm⁻¹ to theophylline monohydrate with a characteristic peak at 1686 cm⁻¹ (top). Waterfall plot of NIR spectra collected during a granulation run highlighting the dominating effect of the water peak at 1450 nm (bottom). Reprinted with permission from [91]. Copyright 2005, John Wiley and Sons.

thon (i.e., acid–amide) formation. The commonly applied methods of cocrystallization are mechanochemical (liquid-assisted or neat grinding), solution-mediated (reaction crystallization, slurrycrystallization, co-evaporation, deliquescence in high humidity environment), and more recently supercritical fluid methods, e.g., for indomethacin–saccharin [97] and various combinations of paracetamol, cholesterol, caffeine, and lactose [98]. It has also been shown that cocrystals can form spontaneously in powder mixtures without any mechanical activation [99].

As mentioned, X-ray diffraction is by far the most popular method used to characterize crystalline materials (Table 6). PXRD allows conventional 'fingerprinting' to identify new cocrystal form(s) from a physical mixture of API and co-former. X-ray diffraction has been shown to be the key method in characterizing various cocrystal systems such as typical API–co-former cocrystals (carbamazepine–nicotinamide [100], carbamazepine/spironolactone/indomethacin with saccharin as the co-former [97,101,102]), API–co-former hydrate cocrystals (theophylline–citric acid monohydrate [103]) and API–API cocrystals (lamivudine–zidovudine [104]). Also more complicated systems have been prepared and crystallographically characterized, such as a cocrystal comprised of a salt API and a nonionized free acid moiety as the co-former (tiotropium fumarate–fumaric acid [105]), and a cocrystal consisting of a salt API, cocrystal former and two hydrate water molecules (norfloxacin saccharinate–saccharin dihydrate [106]). The use of multivariate analysis of PXRD data has also been demonstrated in the context of cocrystal formation. Using PXRD-PCA, the cocrystallization

Fig. 5. PXRD-PCA score plot showing the formation pathway based on the second and third principal components. Every point on the score plot represents a PXRD pattern of carbamazepine (form 1, form 3 or dihydrate)–nicotinamide samples co-milled for various times. The arrows represent the direction of cocrystal formation, and PM denotes the physical mixture. Reprinted with permission from [107]. Copyright 2009, American Chemical Society.

pathways of carbamazepine–nicotinamide cocrystal from carbamazepine form I, III and dihydrate were followed (Fig. 5) [107].

Spectroscopic analysis can provide complementary molecularlevel information to support the formation of a new cocrystal system. The spectroscopic data can present a clearly different spectrum or just slightly shifted absorption bands (relative to the parent solids) due to intermolecular interactions. Such band shifts are extremely useful in determining the specific functional groups that are involved in molecular interactions. Results of such studies have been reported for piracetam-dihvdrobenzoic acid isomers (FT-IR analysis) [108], carbamazepine-saccharin (FT-IR analysis) [109], compound 1-glutamic acid (FT-Raman analysis) [110] and theobromine-oxalic acid (terahertz time domain spectroscopy analysis) [111] cocrystals. The ability of FT-IR to differentiate caffeine-hydroxy-2-naphthoic acid cocrystals from three different co-former isomers (i.e., 1 or 3 or 6-hydroxy-2-naphthoic acid) has also been demonstrated [112]. In a liquid-assisted co-milling cocrystallization study comparing off-line NIR and Raman spectroscopy combined with PCA, Allesø et al. found that Raman spectroscopy is a superior method compared to NIR spectroscopy mainly because of the low selectivity in the latter technique and the complexity of the solid samples of interest [113]. NIR spectroscopy and PCA require an additional set of reference samples before subtle differences can be differentiated [113]. Like in the case of crystalline polymorphs with very similar structures (see Section 3.1), THz-time domain spectroscopy (THz-TDS) has been used to differentiate between structurally similar cocrystals. Parrott et al. investigated isostructural cocrystals of theophylline with chiral and racemic forms of malic and tartaric acid as cocrystal formers, and concluded that THz-TDS is comparable in sensitivity to diffraction methods and more sensitive than Raman spectroscopy to changes in cocrystal architecture [114].

In addition to the X-ray diffraction and spectroscopic techniques, thermal analysis can also offer an insight into the key properties of cocrystals. While the thermograms usually exhibit a new melting point that is different from the parent solids for a fully crystallized cocrystal, DSC analysis has also been used to probe the thermal properties of intermediate stages during the cocrystallization process. Jayasankar et al. showed that cocrystal formation may be mediated through an amorphous phase as a T_{g} that was observed in an intermediate cryo-milled sample [109]. Seefeldt et al. also reported an intermediate amorphous phase (T_g at ~19–22 °C) of an in situ quench-cooled carbamazepine-nicotinamide sample, followed by a series of other thermal events (crystallization, melting and cocrystallization) before the melting endotherm of the carbamazepine-nicotinamide cocrystal at ~158 °C [115]. The multiple events were confirmed visually using hot stage PLM (Fig. 6). In another study, Berry et al. constructed a mixing zone on a hot stage PLM to screen for cocrystal formation of seven APIs with nicotinamide using a Kofler contact method (i.e., mapping of melt profile). Five APIs (ibuprofen R/S, ibuprofen S, salicylic acid, fenbufen and flurbiprofen) were visualized, and confirmed by PXRD to form cocrystal with nicotinamide [116].

4. Summary

Various analytical techniques are available to characterize and monitor the solid state of pharmaceutical materials. However, the method of choice depends on the type and depth of information required. Generally, a combination approach using at least two complementary methods is recommended. In this survey it was found that on average four techniques are used in published studies. The four most commonly used methods were PXRD, DSC/MTDSC, FT-IR spectroscopy and microscopy. Analysis using these techniques provides a good overview on the solid-state characteristics

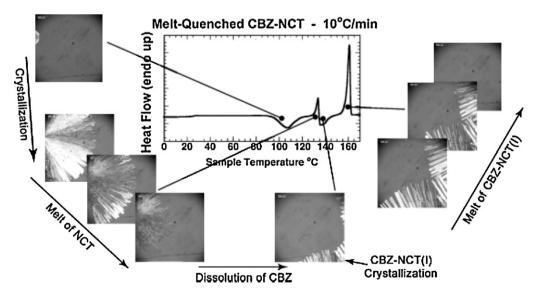


Fig. 6. DSC and hot stage-PLM results during non-isothermal crystallization studies of the amorphous phase of carbamazepine and nicotinamide at a heating rate of 10 K per min. Reprinted with permission from [115]. Copyright 2007, John Wiley and Sons.

of the sample of interest as they cover a broad range of the physicochemical properties (crystallographic, thermal, molecular and morphological, respectively). Gravimetric methods (TGA/DVS) are also commonly used to study the weight loss/gain in solvates and provide an insight into the stability of the sample. Naturally, PXRD and SCXRD are the methods of choice for crystallographic analysis. For amorphous systems, thermal methods such as DSC and IMC can differentiate amorphous from nanocrystalline and disordered crystalline systems where spectroscopic and X-ray methods may fail. Modern spectroscopic instruments equipped with fiber-optic probes are extremely useful for in-line/on-line or at-line analysis (i.e., suitable for process analytical technology (PAT) applications). Raw spectral/diffraction data can also be further processed with methods such as chemometrics or PDF analysis to further increase the sensitivity and selectivity, and thus improve the analytical capability in both qualitative and quantitative studies.

Acknowledgements

Professor Michael Pikal (Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut) is acknowledged for the post-doctoral opportunity in his group (for NC).

References

- H.G. Brittain, Polymorphism in Pharmaceutical Solids, 2nd ed., Informa Healthcare USA, Inc., New York, 2009.
- [2] R. Hilfiker, Polymorphism in the Pharmaceutical Industry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.
- [3] L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Adv. Drug Deliv. Rev. 48 (2001) 27–42.
- [4] B. Rodriguez-Spong, C.P. Price, A. Jayasankar, A.J. Matzger, N. Rodriguez-Hornedo, General principles of pharmaceutical solid polymorphism: a supramolecular perspective, Adv. Drug Deliv. Rev. 56 (2004) 241-274.
- [5] M. Pudipeddi, A.T. Serajuddin, Trends in solubility of polymorphs, J. Pharm. Sci. 94 (2005) 929–939.
- [6] B.C. Hancock, M. Parks, What is the true solubility advantage of amorphous pharmaceuticals? Pharm. Res. 17 (2000) 397–404.
- [7] I. Miroshnyk, S. Mirza, N. Sandler, Pharmaceutical co-crystals an opportunity for drug product enhancement, Exp. Opin. Drug Deliv. 6 (2009) 333–341.
- [8] G. Stahly, Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals, Cryst. Growth Des. 7 (2007) 1007–1026.
- [9] A. Heinz, C.J. Strachan, K.C. Gordon, T. Rades, Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy, J. Pharm. Pharmacol. 61 (2009) 971–988.
- [10] K. Knapman, Polymorphic predictions: understanding the nature of crystalline compounds can be critical in drug development and manufacture, Mod. Drug Discov. 3 (2000), 53–54, 57.
- [11] S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, G. Poochikian, Pharmaceutical solids: a strategic approach to regulatory consideration, Pharm. Res. 12 (1995) 945–954.
- [12] G.D.P. Buckton, Assessment of disorder in crystalline powders a review of analytical techniques and their application, Int. J. Pharm. 179 (1999) 141–158.
- [13] H.G. Brittain, Physical Characterization of Pharmaceutical Solids, Marcel Dekker, Inc., New York, 1995.
- [14] Z. Dong, A. Chatterji, H. Sandhu, D.S. Choi, H. Chokshi, N. Shah, Evaluation of solid state properties of solid dispersions prepared by hotmelt extrusion and solvent co-precipitation, Int. J. Pharm. 355 (2008) 141–149.
- [15] M. Sheikhzadeh, S. Rohani, A. Jutan, T. Manifar, Quantitative and molecular analysis of buspirone hydrochloride polymorphs, J. Pharm. Sci. 96 (2007) 569–583.
- [16] M. Sheikhzadeh, S. Rohani, A. Jutan, T. Manifar, K. Murthy, S. Horne, Solidstate characterization of buspirone hydrochloride polymorphs, Pharm. Res. 23 (2006) 1043–1050.
- [17] F.G. Vogt, J. Brum, L.M. Katrincic, A. Flach, J.M. Socha, R.M. Goodman, R.C. Haltiwanger, Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: understanding the role of water, Cryst. Growth Des. 6 (2006) 2333–2354.
- [18] R.B. Gandhi, J.B. Bogardus, D.E. Bugay, R.K. Perrone, M.A. Kaplan, Pharmaceutical relationships of three solid state forms of stavudine, Int. J. Pharm. 201 (2000) 221–237.
- [19] D. Burnett, F. Thielmann, T. Sokoloski, Investigating carbamazepine-acetone solvate formation via dynamic gravimetric vapor sorption, J. Therm. Anal. Calorim. 89 (2007) 693–698.

- [20] Y. Hu, H. Wikström, S.R. Byrn, L.S. Taylor, Analysis of the effect of particle size on polymorphic quantitation by Raman spectroscopy, Appl. Spectrosc. 60 (2006) 977–984.
- [21] A.M. Amado, M.M. Nolasco, P.J.A. Ribeiro-Claro, Probing pseudopolymorphic transitions in pharmaceutical solids using Raman spectroscopy: hydration and dehydration of theophylline, J. Pharm. Sci. 96 (2007) 1366–1379.
- [22] G. Mollica, M. Geppi, R. Pignatello, C. Veracini, Molecular properties of flurbiprofen and its solid dispersions with eudragit RL100 studied by high- and low-resolution solid-state nuclear magnetic resonance, Pharm. Res. 23 (2006) 2129–2140.
- [23] S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley, A. Newman, Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns, Pharm. Res. 23 (2006) 2333–2349.
- [24] Y.K. Dijiba, A. Zhang, T.M. Niemczyk, Determinations of ephedrine in mixtures of ephedrine and pseudoephedrine using diffuse reflectance infrared spectroscopy, Int. J. Pharm. 289 (2005) 39–49.
- [25] M. Karjalainen, S. Airaksinen, J. Rantanen, J. Aaltonen, J. Yliruusi, Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction, J. Pharm. Biomed. Anal. 39 (2005) 27–32.
- [26] J.P. Higgins, S.M. Arrivo, R.A. Reed, Approach to the determination of hydrate form conversions of drug compounds and solid dosage forms by near-infrared spectroscopy, J. Pharm. Sci. 92 (2003) 2303–2316.
- [27] S.G. Skoulika, C.A. Georgiou, Rapid, noninvasive quantitative determination of acyclovir in pharmaceutical solid dosage forms through their poly(vinyl chloride) blister package by solid-state Fourier transform Raman spectroscopy, Appl. Spectrosc. 57 (2003) 407–412.
- [28] S.G. Skoulika, C.A. Georgiou, Rapid quantitative determination of ciprofloxacin in pharmaceuticals by use of solid-state FT-Raman spectroscopy, Appl. Spectrosc. 55 (2001) 1259–1265.
- [29] A.D. Patel, P.E. Luner, M.S. Kemper, Quantitative analysis of polymorphs in binary and multi-component powder mixtures by near-infrared reflectance spectroscopy, Int. J. Pharm. 206 (2000) 63–74.
- [30] G. Shete, V. Puri, L. Kumar, A.K. Bansal, Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples, AAPS PharmSciTech 11 (2010) 598–609.
- [31] M. Windbergs, M. Haaser, C.M. McGoverin, K.C. Gordon, P. Kleinebudde, C.J. Strachan, Investigating the relationship between drug distribution in solid lipid matrices and dissolution behaviour using Raman spectroscopy and mapping, J. Pharm. Sci. 99 (2010) 1464–1475.
- [32] F. Monajjemzadeh, D. Hassanzadeh, H. Valizadeh, M.R. Siahi-Shadbad, J.S. Mojarrad, T.A. Robertson, M.S. Roberts, Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets, Eur. J. Pharm. Biopharm. 73 (2009) 404–413.
- [33] A.A.S. Araújo, S. Storpirtis, L.P. Mercuri, F.M.S. Carvalho, M.d.S. Filho, J.R. Matos, Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms, Int. J. Pharm. 260 (2003) 303–314.
- [34] Y. Hu, H. Wikström, S.R. Byrn, L.S. Taylor, Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy, J. Pharm. Biomed. Anal. 45 (2007) 546–551.
- [35] E.H. Lee, S.X.M. Boerrigter, A.C.F. Rumondor, S.P. Chamarthy, S.R. Byrn, Formation and solid-state characterization of a salt-induced metastable polymorph of flufenamic acid, Cryst. Growth Des. 8 (2008) 91–97.
- [36] S. Dharmayat, J. Calderon De Anda, R.B. Hammond, X. Lai, K.J. Roberts, X.Z. Wang, Polymorphic transformation of L-glutamic acid monitored using combined on-line video microscopy and X-ray diffraction, J. Cryst. Growth 294 (2006) 35–40.
- [37] P.C. Upadhya, K.L. Nguyen, Y.C. Shen, J. Obradovic, K. Fukushige, R. Griffiths, L.F. Gladden, A.G. Davies, E.H. Linfield, Characterization of crystalline phase transformations in theophylline by time-domain terahertz spectroscopy, Spectrosc. Lett. 39 (2006) 215–224.
- [38] F.T. Martins, A.O. Legendre, S.B. Honorato, A.P. Ayala, A.n.C. Doriguetto, J. Ellena, Solvothermal preparation of drug crystals: didanosine, Cryst. Growth Des. 10 (2010) 1885–1891.
- [39] R. Perumal, S. Moorthy Babu, Synthesis, growth and characterization of an organometallic complex tri-allylthiourea cadmium bromide single crystals, Curr. Appl. Phys. 10 (2010) 858–865.
- [40] J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, T. Rades, Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting a review, J. Pharm. Pharmacol. 59 (2007) 209–223.
- [41] C.J. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, T. Rades, Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity, J. Pharm. Sci. 94 (2005) 837–846.
- [42] J.A. Zeitler, D.A. Newnham, P.F. Taday, T.L. Threlfall, R.W. Lancaster, R.W. Berg, C.J. Strachan, M. Pepper, K.C. Gordon, T. Rades, Characterization of temperature-induced phase transitions in five polymorphic forms of sulfathiazole by terahertz pulsed spectroscopy and differential scanning calorimetry, J. Pharm. Sci. 95 (2006) 2486–2498.
- [43] M.M. De Villiers, R.J. Terblanche, W. Liebenberg, E. Swanepoel, T.G. Dekker, M. Song, Variable-temperature X-ray powder diffraction analysis of the crystal transformation of the pharmaceutically preferred polymorph C of mebenda-zole, J. Pharm. Biomed. Anal. 38 (2005) 435–441.
- [44] J.A. Zeitler, D.A. Newnham, P.F. Taday, C.J. Strachan, M. Pepper, K.C. Gordon, T. Rades, Temperature dependent terahertz pulsed spectroscopy of carbamazepine, Thermochim. Acta 436 (2005) 71–77.

- [45] D. Murnane, C. Marriott, G.P. Martin, Polymorphic control of inhalation microparticles prepared by crystallization, Int. J. Pharm. 361 (2008) 141–149.
- [46] W.-T. Cheng, S.-Y. Lin, S.-L. Wang, Differential scanning calorimetry with curve-fitting program used to quantitatively analyze the polymorphic transformation of famotidine in the compressed compact, Drug Dev. Ind. Pharm. 34 (2008) 1368–1375.
- [47] N. Chieng, Z. Zujovic, G. Bowmaker, T. Rades, D. Saville, Effect of milling conditions on the solid-state conversion of ranitidine hydrochloride form 1, Int. J. Pharm. 327 (2006) 35–44.
- [48] N.M. Vernuri, Z. Chrzan, R. Gavatur, Use of isothermal microcalorimetry in pharmaceutical preformulation studies. Part I. Monitoring crystalline phase transitions, J. Therm. Anal. Calorim. 78 (2004) 47–54.
- [49] M.R. Abu Bakar, Z. Nagy, C. Rielly, A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism, J. Therm. Anal. Calorim. 99 (2010) 609–619.
- [50] H. Novoa de Armas, O.M. Peeters, G. Van den Mooter, N. Blaton, Polymorphism of alprazolam (Xanax[®]): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III), J. Pharm. Sci. 96 (2007) 1114–1130.
- [51] S.-Y. Lin, W.-T. Cheng, S.-L. Wang, Thermodynamic and kinetic characterization of polymorphic transformation of famotidine during grinding, Int. J. Pharm. 318 (2006) 86–91.
- [52] S.-L. Wang, S.-Y. Lin, Y.-S. Wei, Transformation of metastable forms of acetaminophen studied by thermal Fourier transform infrared (FT-IR) microspectroscopy, Chem. Pharm. Bull. 50 (2002) 153–156.
- [53] K. Kogermann, J. Aaltonen, C.J. Strachan, K. Pöllänen, J. Heinämäki, J. Yliruusi, J. Rantanen, Establishing quantitative in-line analysis of multiple solid-state transformations during dehydration, J. Pharm. Sci. 97 (2008) 4983–4999.
- [54] K. Kogermann, J. Aaltonen, C.J. Strachan, K. Pöllänen, P. Veski, J. Heinämäki, J. Yliruusi, J. Rantanen, Qualitative *in situ* analysis of multiple solid-state forms using spectroscopy and partial least squares discriminant modeling, J. Pharm. Sci. 96 (2007) 1802–1820.
- [55] A. Newman, D. Engers, S. Bates, I. Ivanisevic, R.C. Kelly, G. Zografi, Characterization of amorphous API:polymer mixtures using X-ray powder diffraction, J. Pharm. Sci. 97 (2008) 4840–4856.
- [56] V. Petkov, S.J.L. Billinge, J. Heising, M.G. Kanatzidis, Application of atomic pair distribution function analysis to materials with intrinsic disorder. Three-dimensional structure of exfoliated-restacked WS2: not just a random turbostatic assembly of layers, J. Am. Chem. Soc. 122 (2000) 11571–11576.
- [57] A. Heinz, C.J. Strachan, F. Atassi, K.C. Gordon, T. Rades, Characterizing an amorphous system exhibiting trace crystallinity: a case study with saquinavir, Cryst. Growth Des. 8 (2007) 119–127.
- [58] V.-P. Lehto, M. Tenho, K. Vaha-Heikkila, P. Harjunen, M. Paallysaho, J. Valisaari, P. Niemela, K. Jarvinen, The comparison of seven different methods to quantify the amorphous content of spray dried lactose, Powder Technol. 167 (2006) 85–93.
- [59] N. Chieng, T. Rades, D. Saville, Formation and physical stability of the amorphous phase of ranitidine hydrochloride polymorphs prepared by cryomilling, Eur. J. Pharm. Biopharm. 68 (2008) 771–780.
- [60] F. Zhang, J. Aaltonen, F. Tian, D.J. Saville, T. Rades, Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin, Eur. J. Pharm. Biopharm. 71 (2009) 64–70.
- [61] A.D. Gusseme, C. Neves, J.F. Willart, A. Rameau, M. Descamps, Ordering and disordering of molecular solids upon mechanical milling: the case of fananserine, J. Pharm. Sci. 97 (2008) 5000–5012.
- [62] A.M. Abdul-Fattah, K.M. Dellerman, R.H. Bogner, M.J. Pikal, The effect of annealing on the stability of amorphous solids: chemical stability of freezedried moxalactam, J. Pharm. Sci. 96 (2007) 1237–1250.
- [63] C. Bhugra, R. Shmeis, S.L. Krill, M.J. Pikal, Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times, J. Pharm. Sci. 97 (2008) 455–472.
- [64] M. Allesø, N. Chieng, S. Rehder, J. Rantanen, T. Rades, J. Aaltonen, Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation, J. Control. Release 136 (2009) 45–53.
- [65] N. Chieng, J. Aaltonen, D. Saville, T. Rades, Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation, Eur. J. Pharm. Biopharm. 71 (2009) 47–54.
- [66] S. Shimpi, K. Mahadik, K. Takada, A. Paradkar, Application of polyglycolized glycerides in protection of amorphous form of etoricoxib during compression, Chem. Pharm. Bull. 55 (2007) 1448–1451.
- [67] S. Strydom, W. Liebenberg, L. Yu, M. de Villiers, The effect of temperature and moisture on the amorphous-to-crystalline transformation of stavudine, Int. J. Pharm. 379 (2009) 72–81.
- [68] J.F. Kauffman, L.M. Batykefer, D.D. Tuschel, Raman detected differential scanning calorimetry of polymorphic transformations in acetaminophen, J. Pharm. Biomed. Anal. 48 (2008) 1310–1315.
- [69] S. Qi, P. Avalle, R. Saklatvala, D.Q.M. Craig, An investigation into the effects of thermal history on the crystallisation behaviour of amorphous paracetamol, Eur. J. Pharm. Biopharm. 69 (2008) 364–371.
- [70] M. Savolainen, K. Kogermann, A. Heinz, J. Aaltonen, L. Peltonen, C. Strachan, J. Yliruusi, Better understanding of dissolution behaviour of amorphous drugs

by in situ solid-state analysis using Raman spectroscopy, Eur. J. Pharm. Biopharm. 71 (2009) 71–79.

- [71] T.R.M. De Beer, M. Wiggenhorn, R. Veillon, C. Debacq, Y. Mayeresse, B. Moreau, A. Burggraeve, T. Quinten, W. Friess, G. Winter, C. Vervaet, J.P. Remon, W.R.G. Baeyens, Importance of using complementary process analyzers for the process monitoring, analysis, and understanding of freeze drying, Anal. Chem. 81 (2009) 7639–7649.
- [72] S. Romero-Torres, H. Wikström, E.R. Grant, L.S. Taylor, Monitoring of mannitol phase behavior during freeze-drying using non-invasive Raman spectroscopy, PDA J. Pharm. Sci. Technol. 61 (2007) 131–145.
- [73] C. Telang, R. Suryanarayanan, Crystallization of cephalothin sodium during lyophilization from tert-butyl alcohol-water cosolvent system, Pharm. Res. 22 (2005) 153–160.
- [74] T. Okumura, M. Ishida, K. Takayama, M. Otsuka, Polymorphic transformation of indomethacin under high pressures, J. Pharm. Sci. 95 (2006) 689–700.
- [75] N. Chieng, S. Rehder, D. Saville, T. Rades, J. Aaltonen, Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction, J. Pharm. Biomed. Anal. 49 (2009) 18–25.
- [76] A. Heinz, M. Savolainen, T. Rades, C.J. Strachan, Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy, Eur. J. Pharm. Sci. 32 (2007) 182–192.
- [77] K. Kachrimanis, D.E. Braun, U.J. Griesser, Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression, J. Pharm. Biomed. Anal. 43 (2007) 407–412.
- [78] T. Kojima, Y. Yamauchi, S. Onoue, Y. Tsuda, Evaluation of hydrate formation of a pharmaceutical solid by using diffuse reflectance infrared Fourier-transform spectroscopy, J. Pharm. Biomed. Anal. 46 (2008) 788–791.
- [79] E. Suihko, V.-P. Lehto, J. Ketolainen, E. Laine, P. Paronen, Dynamic solid-state and tableting properties of four theophylline forms, Int. J. Pharm. 217 (2001) 225–236.
- [80] S. Mirza, J. Heinämäki, I. Miroshnyk, J. Rantanen, L. Christiansen, M. Karjalainen, J. Yliruusi, Understanding processing-induced phase transformations in erythromycin–PEG 6000 solid dispersions, J. Pharm. Sci. 95 (2006) 1723–1732.
- [81] A. Zimmermann, F. Tian, H. Lopez de Diego, M. Ringkjøbing Elema, J. Rantanen, A. Müllertz, L. Hovgaard, Influence of the solid form of siramesine hydrochloride on its behavior in aqueous environments, Pharm. Res. 26 (2009) 846–854.
- [82] F. Tian, F. Zhang, N. Sandler, K.C. Gordon, C.M. McGoverin, C.J. Strachan, D.J. Saville, T. Rades, Influence of sample characteristics on quantification of carbamazepine hydrate formation by X-ray powder diffraction and Raman spectroscopy, Eur. J. Pharm. Biopharm. 66 (2007) 466–474.
- [83] F. Tian, T. Rades, N. Sandler, Visualizing solvent mediated phase transformation behavior of carbamazepine polymorphs by principal component analysis, AAPS PharmSciTech 9 (2008) 390–394.
- [84] P. Lehto, J. Aaltonen, P. Niemelä, J. Rantanen, J. Hirvonen, V.P. Tanninen, L. Peltonen, Simultaneous measurement of liquid-phase and solid-phase transformation kinetics in rotating disc and channel flow cell dissolution devices, Int. J. Pharm. 363 (2008) 66–72.
- [85] S. Airaksinen, P. Luukkonen, A. Jørgensen, M. Karjalainen, J. Rantanen, J. Yliruusi, Effects of excipients on hydrate formation in wet masses containing theophylline, J. Pharm. Sci. 92 (2003) 516–528.
- [86] Y.-S. Kim, H.C. Paskow, R.W. Rousseau, Propagation of solid-state transformations by dehydration and stabilization of pseudopolymorphic crystals of sodium naproxen, Cryst. Growth Des. 5 (2005) 1623–1632.
- [87] F. Mallet, S. Petit, S. Lafont, P. Billot, D. Lemarchand, G. Coquerel, Solvent exchanges among molecular compounds, J. Therm. Anal. Calorim. 73 (2003) 459–471.
- [88] K. Fujii, H. Uekusa, N. Itoda, G. Hasegawa, E. Yonemochi, K. Terada, Z. Pan, K.D.M. Harris, Physicochemical understanding of polymorphism and solidstate dehydration/rehydration processes for the pharmaceutical material acrinol, by Ab initio powder X-ray diffraction analysis and other techniques, J. Phys. Chem. C 114 (2010) 580–586.
- [89] I. Miroshnyk, L. Khriachtchev, S. Mirza, J. Rantanen, J. Heinämäki, J. Yliruusi, Insight into thermally induced phase transformations of erythromycin A dihydrate, Cryst. Growth Des. 6 (2006) 369–374.
- [90] E. Räsänen, J. Rantanen, J.-P. Mannermaa, J. Yliruusi, H. Vuorela, Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement, J. Pharm. Sci. 92 (2003) 2074–2081.
- [91] H. Wikström, P.J. Marsac, L.S. Taylor, In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy, J. Pharm. Sci. 94 (2005) 209–219.
- [92] Z.-P. Chen, G. Fevotte, A. Caillet, D. Littlejohn, J. Morris, Advanced calibration strategy for in situ quantitative monitoring of phase transition processes in suspensions using FT-Raman spectroscopy, Anal. Chem. 80 (2008) 6658–6665.
- [93] H. Qu, M. Louhi-Kultanen, J. Rantanen, J. Kallas, Solvent-mediated phase transformation kinetics of an anhydrate/hydrate system, Cryst. Growth Des. 6 (2006) 2053–2060.
- [94] A.D. Gift, L.S. Taylor, Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water-solid interactions in pharmaceutical systems, J. Pharm. Biomed. Anal. 43 (2007) 14–23.
- [95] S.L. Childs, M.J. Zaworotko, The reemergence of cocrystals: the crystal clear writing is on the wall introduction to virtual special issue on pharmaceutical cocrystals, Cryst. Growth Des. 9 (2009) 4208–4211.

- [96] B. Sekhon, Pharmaceutical co-crystals a review, ARS Pharm. 50 (2009) 99–117.
- [97] L. Padrela, M.A. Rodrigues, S.P. Velaga, H.A. Matos, E.G. de Azevedo, Formation of indomethacin–saccharin cocrystals using supercritical fluid technology, Eur. J. Pharm. Sci. 38 (2009) 9–17.
- [98] M. Herrmann, U. Förter-Barth, H. Kröber, P.B. Kempa, M.d.M. Juez-Lorenzo, S. Doyle, Co-crystallization and characterization of pharmaceutical ingredients, Part. Part. Syst. Char. 26 (2009) 151–156.
- [99] C. Maheshwari, A. Jayasankar, N.A. Khan, G.E. Amidon, N. Rodríguez-Hornedo, Factors that influence the spontaneous formation of pharmaceutical cocrystals by simply mixing solid reactants, CrystEngComm 11 (2009) 493–500.
- [100] E. Gagnière, D. Mangin, F. Puel, A. Rivoire, O. Monnier, E. Garcia, J.P. Klein, Formation of co-crystals: kinetic and thermodynamic aspects, J. Cryst. Growth 311 (2009) 2689–2695.
- [101] W.W. Porter III, S.C. Elie, A.J. Matzger, Polymorphism in carbamazepine cocrystals, Cryst. Growth Des. 8 (2008) 14–16.
- [102] N. Takata, R. Takano, H. Uekusa, Y. Hayashi, K. Terada, A spironolactone-saccharin 1:1 cocrystal hemihydrate, Cryst. Growth Des. 10 (2010) 2116–2122.
- [103] S. Karki, T. Friščić, W. Jones, W.D.S. Motherwell, Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding, Mol. Pharm. 4 (2007) 347–354.
- [104] P.M. Bhatt, Y. Azim, T.S. Thakur, G.R. Desiraju, Co-crystals of the anti-HIV drugs lamivudine and zidovudine, Cryst. Growth Des. 9 (2008) 951–957.
- [105] M. Pop, P. Sieger, P.W. Cains, Tiotropium fumarate: an interesting pharmaceutical co-crystal, J. Pharm. Sci. 98 (2009) 1820–1834.
- [106] S.P. Velaga, S. Basavoju, D. Boström, Norfloxacin saccharinate-saccharin dihydrate cocrystal – a new pharmaceutical cocrystal with an organic counter ion, J. Mol. Struct. 889 (2008) 150–153.
- [107] N. Chieng, M. Hubert, D. Saville, T. Rades, J. Aaltonen, Formation kinetics and stability of carbamazepine-nicotinamide cocrystals prepared by mechanical activation, Cryst. Growth Des. 9 (2009) 2377–2386.
- [108] X. Liao, M. Gautam, A. Grill, H.J. Zhu, Effect of position isomerism on the formation and physicochemical properties of pharmaceutical co-crystals, J. Pharm. Sci. 99 (2010) 246–254.
- [109] A. Jayasankar, A. Somwangthanaroj, Z. Shao, N. Rodríguez-Hornedo, Cocrystal formation during cogrinding and storage is mediated by amorphous phase, Pharm. Res. 23 (2006) 2381–2392.
- [110] D. McNamara, S. Childs, J. Giordano, A. Iarriccio, J. Cassidy, M. Shet, R. Mannion, E. O'Donnell, A. Park, Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API, Pharm. Res. 23 (2006) 1888–1897.
- [111] E.P.J. Parrott, J.A. Zeitler, T. Friščić, G.M. Day, M. Pepper, W. Jones, L.F. Gladden, 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics, 2008, IRMMW-THz 2008, 2008.
- [112] D.-K. Bučar, R.F. Henry, X. Lou, R.W. Duerst, T.B. Borchardt, L.R. MacGillivray, G.G.Z. Zhang, Co-crystals of caffeine and hydroxy-2-naphthoic acids: unusual formation of the carboxylic acid dimer in the presence of a heterosynthon, Mol. Pharm. 4 (2007) 339–346.
- [113] M. Allesø, S. Velaga, A. Alhalaweh, C. Cornett, M.A. Rasmussen, F.v.d. Berg, H.L.d. Diego, J. Rantanen, Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy, Anal. Chem. 80 (2008) 7755–7764.
- [114] E.P.J. Parrott, J.A. Zeitler, T. Friščić, M. Pepper, W. Jones, G.M. Day, L.F. Gladden, Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystal, Cryst. Growth Des. 9 (2009) 1452–1460.
- [115] K. Seefeldt, J. Miller, F. Alvarez-Núñez, N. Rodríguez-Hornedo, Crystallization pathways and kinetics of carbamazepine–nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies, J. Pharm. Sci. 96 (2007) 1147–1158.
- [116] D.J. Berry, C.C. Seaton, W. Clegg, R.W. Harrington, S.J. Coles, P.N. Horton, M.B. Hursthouse, R. Storey, W. Jones, T. Friščić, N. Blagden, Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients, Cryst. Growth Des. 8 (2008) 1697–1712.
- [117] H.G. Brittain, Spectroscopy of Pharmaceutical Solids, 1st ed., Taylor & Francis Group, New York, 2006.
- [118] A. Forster, K. Gordon, D. Schmierer, N. Soper, V. Wu, T. Rades, Characterisation of two polymorphic forms of ranitidine-HCl, Internet J. Vib. Spectrosc. 2 (1998).
- [119] D.E. Bugay, Characterization of the solid state: spectroscopic techniques, Adv. Drug Deliv. Rev. 48 (2001) 43–65.
- [120] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Inc., San Diego, 1990.
- [121] S. Wartewig, R.H.H. Neubert, Pharmaceutical applications of mid-IR and Raman spectroscopy, Adv. Drug Deliv. Rev. 57 (2005) 1144–1170.
- [122] J.M. Chalmers, N.J. Everall, FTIR, FT-Raman and chemometrics: applications to the analysis and characterisation of polymers, Trends Anal. Chem. 15 (1996) 18–25.
- [123] C.J. Petty, D.E. Bugay, W.P. Findlay, C. Rodriquez, Applications of FT-Raman spectroscopy in the pharmaceutical industry, Spectroscopy 11 (1996) 41–45.
- [124] C.M. McGoverin, T. Rades, K.C. Gordon, Recent pharmaceutical applications of Raman and terahertz spectroscopies, J. Pharm. Sci. 97 (2008) 4598–4621.

- [125] A.I. Komyak, A.M. Malyarevich, M.P. Posledovich, Raman spectroscopy study of hydrogen bonds and vibrations of the triglycine sulfate crystal lattice, J. Appl. Spectrosc. 59 (1993) 832–836.
- [126] G.W. Small, Chemometrics and near-infrared spectroscopy: avoiding the pitfalls, Trends Anal. Chem. 25 (2006) 1057–1066.
- [127] E. Räsänen, N. Sandler, Near infrared spectroscopy in the development of solid dosage forms, J. Pharm. Pharmacol. 59 (2006) 147–159.
- [128] G. Reich, Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications, Adv. Drug Deliv. Rev. 57 (2005) 1109–1143.
- [129] T. Elizarova, S. Shtyleva, T. Pleteneva, Using near-infrared spectrophotometry for the identification of pharmaceuticals and drugs, Pharm. Chem. J. 42 (2008) 432–434.
- [130] P.A. Tishmack, D.A. Bugay, S.R. Byrn, Solid-state nuclear magnetic resonance spectroscopy – pharmaceutical application, J. Pharm. Sci. 92 (2003) 441–474.
- [131] T.J. Offerdahl, Solid-state NMR spectroscopy for pharmaceutical analysis, Pharm. Technol. 28 (2004) S54.
- [132] R.T. Berendt, D.M. Sperger, E.J. Munson, P.K. Isbester, Solid-state NMR spectroscopy in pharmaceutical research and analysis, Trends Anal. Chem. 25 (2006) 977–984.
- [133] P.F. Taday, Applications of terahertz spectroscopy to pharmaceutical sciences, philosophical transactions: mathematical, Phys. Eng. Sci. 362 (2004) 351–364.
- [134] D.A. Newnham, P.F. Taday, Pulsed terahertz attenuated total reflection spectroscopy, Appl. Spectrosc. 62 (2008) 394–398.
- [135] L. Brügemann, E.K.E. Gerndt, Detectors for X-ray diffraction and scattering: a user's overview, Nucl. Instrum. Methods Phys. Res., Sect. A 531 (2004) 292–301.
- [136] R.J. Hemley, G.L. Chiarotti, M. Bernasconi, L. Ulivi, High Pressure Phenomena, IOS Press, Italy, 2002.
- [137] K.D.M. Harris, Modern applications of powder X-ray diffraction in pharmaceutical sciences, Am. Pharm. Rev. 7 (2004) 86–91.
- [138] R.-J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000.
- [139] B. Chu, B.S. Hsiao, Small-angle X-ray scattering of polymers, Chem. Rev. 101 (2001) 1727–1761.
- [140] C. Wutz, M. Bark, J. Cronauer, R. Diihrmann, H.G. Zachmann, Simultaneous measurements of small angle X-ray scattering, wide angle X-ray scattering, and light scattering during phase transitions in polymers (invited), Rev. Sci. Instrum. 66 (1995) 1303–1307.
- [141] D. Craig, M. Reading, Principles of differential scanning calorimetry, in: D. Craig, M. Reading (Eds.), Thermal Analysis of Pharmaceuticals, CRC Press, Taylor and Francis Group, Boca Raton, FL, 2007.
- [142] J. Ford, P. Timmins, Pharmaceutical Thermal Analysis: Techniques and Applications, Ellis Horwood Limited, Chichester, West Sussex, England, 1989.
- [143] D.M.Q. Craig, P.G. Royall, The use of modulated temperature DSC for the study of pharmaceutical systems: potential uses and limitation, Pharm. Res. 15 (1998) 1152–1153.
- [144] E. Verdonck, K. Schaap, L.C. Thomas, A discussion of the principles and application of modulated temperature DSC (MTDSC), Int. J. Pharm. 192 (1999) 3–20.
- [145] P.G. Royall, D.Q.M. Craig, C. Doherty, Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC, Int. J. Pharm. 192 (1999) 39–46.
- [146] J. Han, R. Suryanarayanan, A method for the rapid evaluation of the physical stability of pharmaceutical hydrates, Thermochim. Acta 329 (1999) 163–170.
- [147] A. Galwey, D. Craig, Thermogravimetric analysis: basic principles, in: D. Craig, M. Reading (Eds.), Thermal Analysis of Pharmaceuticals, CRC Press, Taylor and Francis Group, Boca Raton, FL, 2007, pp. 139–192.
- [148] R. Willson, Calorimetry, in: P.J. Haines (Ed.), Principles of Thermal Analysis and Calorimetry, Royal Society of Chemistry, Cambridge, UK, 2002.
- [149] R. Kemp, Nonscanning calorimetry, in: M.E. Brown (Ed.), Handbook of Thermal Analysis and Calorimetry: Principles and Practice, Elsevier Science B.V., Amsterdam, The Netherlands, 1998.
- [150] G. Buckton, Principles and pharmaceutical applications of isothermal microcalorimetry, in: D. Craig, M. Reading (Eds.), Thermal Analysis of Pharmaceuticals, CRC Press, Taylor and Francis Group, Boca Raton, FL, 2007, pp. 265–286.
- [151] I. Wadsö, Trends in isothermal microcalorimetry, Chem. Soc. Rev. 26 (1997) 79–86.
- [152] S. Gaisford, M.A.A. O'Neill, Pharmaceutical Isothermal Calorimetry, Informa Healthcare USA, Inc., New York, NY, 2007.
- [153] D. Gao, J.H. Rytting, Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients, Int. J. Pharm. 151 (1997) 183–192.
- [154] R. Price, P.M. Young, Visualization of the crystallization of lactose from the amorphous state, J. Pharm. Sci. 93 (2004) 155–164.
- [155] J. Lu, S. Rohani, Preparation and characterization of theophylline-nicotinamide cocrystal, Org. Process Res. Dev. 13 (2009) 1269–1275.
- [156] J. Liu, Physical characterization of pharmaceutical formulation in frozen and freeze-dried solid states: techniques and applications in freeze-drying development, Pharm. Dev. Technol. 11 (2006) 3–28.
- [157] J.C. May, E. Grim, R.M. Wheeler, J. West, Determination of residual moisture in freeze-dried viral vaccines: Karl Fischer, gravimetric and thermogravimetric methodologies, J. Biol. Stand. 10 (1982) 249–259.
- [158] L. Zhu, Y. Chen, Y.-Y. Gao, J.-K. Wang, Determination of total water content in tobramycin using the volumetric Karl Fischer titration, Chin. J. Antibiot. 33 (2008), 753–755, 760.

- [159] R.R. Vippagunta, C. Pan, R. Vakil, V. Meda, R. Vivilecchia, M. Motto, Application of surface area measurement for identifying the source of batch-to-batch variation in processability, Pharm. Dev. Technol. 14 (2009) 492–498.
- [160] S. Lowell, J.E. Shields, Powder Surface Area and Porosity, J.W. Arrowsmith Ltd., Bristol, Great Britain, 1984.
- [161] L.M. Katrincic, Y.T. Sun, R.A. Carlton, A.M. Diederich, R.L. Mueller, F.G. Vogt, Characterization, selection, and development of an orally dosed drug polymorph from an enantiotropically related system, Int. J. Pharm. 366 (2009) 1–13.
- [162] A. Foppoli, L. Zema, A. Gazzaniga, M.R. Caira, L.R. Nassimbeni, E. Borkum, R. Bettini, F. Giordano, Solid-state chemistry of ambroxol theophylline-7acetate, J. Pharm. Sci. 96 (2007) 1139–1146.
- [163] S. Rastogi, M. Zakrzewski, R. Suryanarayanan, Investigation of solid-state reactions using variable temperature X-ray powder diffractometry. II. Aminophylline monohydrate, Pharm. Res. 19 (2002) 1265–1273.
- [164] C. Goddeeris, T. Willems, K. Houthoofd, J.A. Martens, G. Van den Mooter, Dissolution enhancement of the anti-HIV drug UC 781 by formulation in a ternary solid dispersion with TPGS 1000 and Eudragit E100, Eur. J. Pharm. Biopharm. 70 (2008) 861–868.
- [165] S. Mirza, I. Miroshnyk, J. Rantanen, J. Aaltonen, P. Harjula, E. Kiljunen, J. Heinämäki, J. Yliruusi, Solid-state properties and relationship between anhydrate and monohydrate of baclofen, J. Pharm. Sci. 96 (2007) 2399–2408.
- [166] B. De Spiegeleer, D. Seghers, R. Wieme, J. Schaubroeck, F. Verpoort, G. Slegers, L. Van Vooren, Determination of the relative amounts of three crystal forms of a benzimidazole drug in complex finished formulations by FT-Raman spectroscopy, J. Pharm. Biomed. Anal. 39 (2005) 275–280.
- [167] H.H.Y. Tong, A.S.F. Chow, H.M. Chan, A.H.L. Chow, Y.K.Y. Wan, I.D. Williams, F.L.Y. Shek, C.K. Chan, Process-induced phase transformation of berberine chloride hydrates, J. Pharm. Sci. 99 (2010) 1942–1954.
- [168] A. Lemmerer, N.B. Bal thori, C. Esterhuysen, S.A. Bourne, M.R. Caira, Concomitant polymorphs of the antihyperlipoproteinemic bezafibrate, Cryst. Growth Des. 9 (2009) 2646–2655.
- [169] P. McArdle, K. Gilligan, D. Cunningham, A. Ryder, Determination of the polymorphic forms of bicifadine hydrochloride by differential scanning calorimetry, thermogravimetric analysis, X-ray powder diffraction, attenuated total reflectance-infrared spectroscopy and attenuated total reflectance-nearinfrared spectroscopy, Appl. Spectrosc. 59 (2005) 1365–1371.
- [170] M. Jug, F. Maestrelli, M. Bragagni, P. Mura, Preparation and solid-state characterization of bupivacaine hydrochloride cyclodextrin complexes aimed for buccal delivery, J. Pharm. Biomed. Anal. 52 (2010) 9–18.
- [171] A. Hugerth, M. Brisander, U. Wrange, M. Kritikos, B. Norrlind, M. Svensson, M. Bisrat, J. Ostelius, Physical characterization of anhydrous and hydrous forms of the hydrochloride salt of BVT.5182 A novel 5-HT 6 receptor antagonist, Drug Dev. Ind. Pharm. 32 (2006) 185–196.
- [172] P. Lehto, J. Aaltonen, M. Tenho, J. Rantanen, J. Hirvonen, V.P. Tanninen, L. Peltonen, Solvent-mediated solid phase transformations of carbamazepine: effects of simulated intestinal fluid and fasted state simulated intestinal fluid, J. Pharm. Sci. 98 (2009) 985–996.
- [173] F. Tian, N. Sandler, J. Aaltonen, C. Lang, D. Saville, K.C. Gordon, C.J. Strachan, J. Rantanen, T. Rades, Influence of polymorphic form, morphology, and excipient interactions on the dissolution of carbamazepine compacts, J. Pharm. Sci. 96 (2007) 584–594.
- [174] G. Chawla, P. Gupta, R. Thilagavathi, A.K. Chakraborti, A.K. Bansal, Characterization of solid-state forms of celecoxib, Eur. J. Pharm. Sci. 20 (2003) 305–317.
- [175] P.L.D. Wildfong, K.R. Morris, C.A. Anderson, S.M. Short, Demonstration of a shear-based solid-state phase transformation in a small molecular organic system: chlorpropamide, J. Pharm. Sci. 96 (2007) 1100–1113.
- [176] M. Otsuka, F. Kato, Y. Matsuda, Physicochemical stability of cimetidine amorphous forms estimated by isothermal microcalorimetry, AAPS PharmSciTech 3 (2002) E30.
- [177] V. Tantishaiyakul, K. Suknuntha, V. Vao-Soongnern, Characterization of cimetidine-piroxicam coprecipitate interaction using experimental studies and molecular dynamic simulations, AAPS PharmSciTech (2010), doi:10.1208/s12249-12010-19461-12245.
- [178] Y. Tozuka, A. Ito, H. Seki, T. Oguchi, K. Yamamoto, Characterization and quantitation of clarithromycin polymorphs by powder X-ray diffractometry and solid-state NMR spectroscopy, Chem. Pharm. Bull. 50 (2002) 1128–1130.
- [179] B. Vittorio, P. Elena, S. Riccardo, S. Fabio, Quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples by Fourier transform infrared spectroscopy, J. Pharm. Sci. 95 (2006) 159–166.
- [180] G.S. Jadhav, P.R. Vavia, Physicochemical, in silico and in vivo evaluation of a danazol-[beta]-cyclodextrin complex, Int. J. Pharm. 352 (2008) 5–16.
- [181] M. Bartolomei, A. Rodomonte, E. Antoniella, G. Minelli, P. Bertocchi, Hydrate modifications of the non-steroidal anti-inflammatory drug diclofenac sodium: solid-state characterisation of a trihydrate form, J. Pharm. Biomed. Anal. 45 (2007) 443–449.
- [182] M.C. Martínez-Ohárriz, C. Rodríguez-Espinosa, C. Martín, M.M. Goñi, M.C. Tros-Ilarduya, M. Sánchez, Solid dispersions of diflunisal-PVP: polymorphic and amorphous states of the drug, Drug Dev. Ind. Pharm. 28 (2002) 717–725.
- [183] J.E. Patterson, M.B. James, A.H. Forster, R.W. Lancaster, J.M. Butler, T. Rades, The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds, J. Pharm. Sci. 94 (2005) 1998–2012.

- [184] S. Sathigari, G. Chadha, Y.H. Lee, N. Wright, D. Parsons, V. Rangari, O. Fasina, R. Babu, Physicochemical characterization of efavirenz–cyclodextrin inclusion complexes, AAPS PharmSciTech 10 (2009) 81–87.
- [185] J. Baronsky, S. Bongaerts, M. Traeubel, H.-C. Weiss, N. Urbanetz, The study of different solid forms of Emodepside, Eur. J. Pharm. Biopharm. 71 (2009) 88–99.
- [186] L. Kumar, A. Amin, A.K. Bansal, Preparation and characterization of salt forms of enalapril, Pharm. Dev. Technol. 13 (2008) 345–357.
- [187] Z. Német, G.C. Kis, G. Pokol, Á. Demeter, Quantitative determination of famotidine polymorphs: X-ray powder diffractometric and Raman spectrometric study, J. Pharm. Biomed. Anal. 49 (2009) 338–346.
- [188] A. Heinz, K.C. Gordon, C.M. McGoverin, T. Rades, C.J. Strachan, Understanding the solid-state forms of fenofibrate – a spectroscopic and computational study, Eur. J. Pharm. Biopharm. 71 (2009) 100–108.
- [189] A. Othman, J.S.O. Evans, I.R. Evans, R.K. Harris, P. Hodgkinson, Structural study of polymorphs and solvates of finasteride, J. Pharm. Sci. 96 (2007) 1380–1397.
- [190] X. Chen, J.G. Stowell, K.R. Morris, S.R. Byrn, Quantitative study of solid-state acid-base reactions between polymorphs of flufenamic acid and magnesium oxide using X-ray powder diffraction, J. Pharm. Biomed. Anal. 51 (2009) 866–874.
- [191] V. Iannuccelli, G. Coppi, E. Leo, F. Fontana, M. Bernabei, PVP solid dispersions for the controlled release of furosemide from a floating multiple-unit system, Drug Dev. Ind. Pharm. 26 (2000) 595–603.
- [192] A.C. Schmidt, I. Schwarz, Solid-state characterization of non-stoichiometric hydrates of ester-type local anaesthetics. Part XI. Crystal polymorphism of local anaesthetic drugs, Int. J. Pharm. 320 (2006) 4–13.
- [193] S. Bogdanova, I. Pajeva, P. Nikolova, I. Tsakovska, B. Müller, Interactions of poly(vinylpyrrolidone) with ibuprofen and naproxen: experimental and modeling studies, Pharm. Res. 22 (2005) 806–815.
- [194] L.M. Oberoi, K.S. Alexander, A.T. Riga, Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients, J. Pharm. Sci. 94 (2005) 93–101.
- [195] O. Takehiro, I. Masaya, T. Kozo, O. Makoto, Polymorphic transformation of indomethacin under high pressures, J. Pharm. Sci. 95 (2006) 689–700.
- [196] C. Bhugra, R. Shmeis, S.L. Krill, M.J. Pikal, Different measures of molecular mobility: comparison between calorimetric and thermally stimulated current relaxation times below Tg and correlation with dielectric relaxation times above Tg, J. Pharm. Sci. 97 (2008) 4498–4515.
- [197] S. Basavoju, D. Boström, S. Velaga, Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization, Pharm. Res. 25 (2008) 530-541.
- [198] P. Harjunen, V.P. Lehto, M. Koivisto, E. Levonen, P. Paronen, K. Järvinen, Determination of amorphous content of lactose samples by solution calorimetry, Drug Dev. Ind. Pharm. 30 (2004) 809–815.
- [199] J.A. Zeitler, K. Kogermann, J. Rantanen, T. Rades, P.F. Taday, M. Pepper, J. Aaltonen, C.J. Strachan, Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy, Int. J. Pharm. 334 (2007) 78–84.
- [200] S. Airaksinen, M. Karjalainen, N. Kivikero, S. Westermarck, A. Shevchenko, J. Rantanen, J. Yliruusi, Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation, AAPS Pharm-SciTech (electronic resource) 6 (2005).
- [201] Y. Xie, W. Cao, S. Krishnan, H. Lin, N. Cauchon, Characterization of mannitol polymorphic forms in lyophilized protein formulations using a multivariate curve resolution (MCR)-based Raman spectroscopic method, Pharm. Res. 25 (2008) 2292–2301.
- [202] H. Grohganz, M. Fonteyne, E. Skibsted, T. Falck, B. Palmqvist, J. Rantanen, Classification of lyophilised mixtures using multivariate analysis of NIR spectra, Eur. J. Pharm. Biopharm. 74 (2010) 406–412.
- [203] V. Giannellini, M. Bambagiotti-Alberti, G. Bartolucci, B. Bruni, S.A. Coran, F. Costantino, M. Di Vaira, Solid-state study of mepivacaine hydrochloride, J. Pharm. Biomed. Anal. 39 (2005) 444–454.
- [204] P. Mura, M.T. Faucci, G.P. Bettinetti, The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-[beta]-cyclodextrin, Eur. J. Pharm. Sci. 13 (2001) 187–194.
- [205] P. Mura, N. Zerrouk, N. Mennini, F. Maestrelli, C. Chemtob, Development and characterization of naproxen-chitosan solid systems with improved drug dissolution properties, Eur. J. Pharm. Sci. 19 (2003) 67–75.
- [206] P. Mura, G.P. Bettinetti, M. Cirri, F. Maestrelli, M. Sorrenti, L. Catenacci, Solid-state characterization and dissolution properties of naproxen-arginine-hydroxypropyl-[beta]-cyclodextrin ternary system, Eur. J. Pharm. Biopharm. 59 (2005) 99–106.
- [207] N. Zerrouk, N. Mennini, F. Maestrelli, C. Chemtob, P. Mura, Comparison of the effect of chitosan and polyvinylpyrrolidone on dissolution properties and analgesic effect of naproxen, Eur. J. Pharm. Biopharm. 57 (2004) 93–99.
- [208] S.R. Vippagunta, K.A. Maul, S. Tallavajhala, D.J.W. Grant, Solid-state characterization of nifedipine solid dispersions, Int. J. Pharm. 236 (2002) 111–123.
- [209] J. Aaltonen, C.J. Strachan, K. Pöllänen, J. Yliruusi, J. Rantanen, Hyphenated spectroscopy as a polymorph screening tool, J. Pharm. Biomed. Anal. 44 (2007) 477–483.
- [210] J. Rantanen, H. Wikström, F.E. Rhea, L.S. Taylor, Improved understanding of factors contributing to quantification of anhydrate/hydrate powder mixtures, Appl. Spectrosc. 59 (2005) 942–951.

- [211] W. Limwikrant, K. Higashi, K. Yamamoto, K. Moribe, Characterization of ofloxacin-oxalic acid complex by PXRD, NMR, and THz spectroscopy, Int. J. Pharm. 382 (2009) 50–55.
- [212] S.M. Reutzel-Edens, J.K. Bush, P.A. Magee, G.A. Stephenson, S.R. Byrn, Anhydrates and hydrates of olanzapine: crystallization, solid-state characterization, and structural relationships, Cryst. Growth Des. 3 (2003) 897–907.
- [213] F.S. Murakami, K.L. Lang, C. Mendes, A.P. Cruz, M.A.S.C. Filho, M.A.S. Silva, Physico-chemical solid-state characterization of omeprazole sodium: thermal, spectroscopic and crystallinity studies, J. Pharm. Biomed. Anal. 49 (2009) 72–80.
- [214] J. Unga, P. Matsson, D. Mahlin, Understanding polymer-lipid solid dispersions – the properties of incorporated lipids govern the crystallisation behaviour of PEG, Int. J. Pharm. 386 (2009) 61–70.
- [215] K. Lien Nguyen, T. Friščić, G.M. Day, LF. Gladden, W. Jones, Terahertz timedomain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation, Nat. Mater. 6 (2007) 206–209.
- [216] S. Sotthivirat, J.W. Lubach, J.L. Haslam, E.J. Munson, V.J. Stella, Characterization of prednisolone in controlled porosity osmotic pump pellets using solid-state NMR spectroscopy, J. Pharm. Sci. 96 (2007) 1008–1017.
- [217] A. Fini, F. Ospitali, G. Zoppetti, N. Puppini, ATR/Raman and fractal characterization of HPBCD/progesterone complex solid particles, Pharm. Res. 25 (2008) 2030–2040.
- [218] G. Zoppetti, N. Puppini, F. Ospitali, A. Fini, Solid state characterization of progesterone in a freeze dried 1:2 progesterone/HPBCD mixture, J. Pharm. Sci. 96 (2007) 1729–1736.
- [219] J. Li, Y. Guo, G. Zografi, The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins, J. Pharm. Sci. 91 (2002) 229–243.
- [220] A. Garg, S. Singh, V.U. Rao, K. Bindu, J. Balasubramaniam, Solid state interaction of raloxifene HCl with different hydrophilic carriers during co-grinding and its effect on dissolution rate, Drug Dev. Ind. Pharm. 35 (2009) 455–470.
- [221] S. Agrawal, Y. Ashokraj, P.V. Bharatam, O. Pillai, R. Panchagnula, Solid-state characterization of rifampicin samples and its biopharmaceutic relevance, Eur. J. Pharm. Sci. 22 (2004) 127–144.
- [222] M.B. Maurin, R.D. Vickery, S.R. Rabel, S.M. Rowe, J.G. Everlof, G.A. Nemeth, G.C. Campbell, C.M. Foris, Polymorphism of roxifiban, J. Pharm. Sci. 91 (2002) 2599–2604.
- [223] M. Varasteh, Z. Deng, H. Hwang, Y.J. Kim, G.B. Wong, Quantitative determination of polymorphic impurity by X-ray powder diffractometry in an OROS[®] formulation, Int. J. Pharm. 366 (2009) 74–81.
- [224] H.R.H. Ali, H.G.M. Edwards, M.D. Hargreaves, T. Munshi, I.J. Scowen, R.J. Telford, Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry, Anal. Chim. Acta 620 (2008) 103–112.
- [225] P. Oliveira, H. Stulzer, L. Bernardi, S. Borgmann, S. Cardoso, M. Silva, Sibutramine hydrochloride monohydrate, J. Therm. Anal. Calorim. 100 (2010) 277–282.
- [226] U. Zimper, J. Aaltonen, C. McGoverin, K. Gordon, K. Krauel-Goellner, T. Rades, Quantification of process induced disorder in milled samples using different analytical techniques, Pharmaceutics 2 (2010) 30–49.
- [227] F. Brandão, M. Tagiari, M. Silva, L. Berti, H. Stulzer, Physical-chemical characterization and quality control of spironolactone raw material samples, Pharm. Chem. J. 42 (2008) 368–376.
- [228] P. Luner, S. Majuru, J. Seyer, M. Kemper, Quantifying crystalline form composition in binary powder mixtures using near-infrared reflectance spectroscopy, Pharm. Dev. Technol. 5 (2000) 231–246.
- [229] K. Pöllänen, A. Häkkinen, S.-P. Reinikainen, J. Rantanen, M. Karjalainen, M. Louhi-Kultanen, L. Nyström, IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product, J. Pharm. Biomed. Anal. 38 (2005) 275–284.
- [230] J. Aaltonen, J. Rantanen, S. Siiriä, M. Karjalainen, A. Jørgensen, N. Laitinen, M. Savolainen, P. Seitavuopio, M. Louhi-Kultanen, J. Yliruusi, Polymorph screening using near-infrared spectroscopy, Anal. Chem. 75 (2003) 5267–5273.
- [231] S.-D. Yeo, M.-S. Kim, J.-C. Lee, Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process, J. Supercrit. Fluids 25 (2003) 143–154.
- [232] K. Yamashita, T. Nakate, K. Okimoto, A. Ohike, Y. Tokunaga, R. Ibuki, K. Higaki, T. Kimura, Establishment of new preparation method for solid dispersion formulation of tacrolimus, Int. J. Pharm. 267 (2003) 79–91.
- [233] J. Bauer, J. Morley, S. Spanton, F.J.J. Leusen, R. Henry, S. Hollis, W. Heitmann, A. Mannino, J. Quick, W. Dziki, Identification, preparation, and characterization of several polymorphs and solvates of terazosin hydrochloride, J. Pharm. Sci. 95 (2006) 917–928.
- [234] J. Aaltonen, K. Kogermann, C.J. Strachan, J. Rantanen, In-line monitoring of solid-state transitions during fluidisation, Chem. Eng. Sci. 62 (2007) 408–415.
- [235] E.D.L. Smith, R.B. Hammond, M.J. Jones, K.J. Roberts, J.B.O. Mitchell, S.L. Price, R.K. Harris, D.C. Apperley, J.C. Cherryman, R. Docherty, The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and 13C and 15N solid-state NMR: a question of polymorphism in a given unit cell, J. Phys. Chem. B 105 (2001) 5818–5826.
- [236] A. Jørgensen, J. Rantanen, M. Karjalainen, L. Khriachtchev, E. Räsänen, J. Yliruusi, Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis, Pharm. Res. 19 (2002) 1285–1291.

- [237] J. Aaltonen, P. Heinänen, L. Peltonen, H. Kortejärvi, V.P. Tanninen, L. Christiansen, J. Hirvonen, J. Yliruusi, J. Rantanen, In situ measurement of solvent-mediated phase transformations during dissolution testing, J. Pharm. Sci. 95 (2006) 2730–2737.
- [238] C. Nunes, A. Mahendrasingam, R. Suryanarayanan, Investigation of the multi-step dehydration reaction of theophylline monohydrate using 2-dimensional powder X-ray diffractometry, Pharm. Res. 23 (2006) 2393–2404.
- [239] A.K. Salameh, L.S. Taylor, Physical stability of crystal hydrates and their anhydrates in the presence of excipients, J. Pharm. Sci. 95 (2006) 446-461.
- [240] F.G. Vogt, P.C. Dell'Orco, A.M. Diederich, Q. Su, J.L. Wood, G.E. Zuber, L.M. Katrincic, R.L. Mueller, D.J. Busby, C.W. DeBrosse, A study of variable hydration states in topotecan hydrochloride, J. Pharm. Biomed. Anal. 40 (2006) 1080–1088.
- [241] N. Li, Y.-H. Zhang, Y.-N. Wu, X.-L. Xiong, Y.-H. Zhang, Inclusion complex of trimethoprim with [beta]-cyclodextrin, J. Pharm. Biomed. Anal. 39 (2005) 824–829.
- [242] B. Giampiero, R.C. Mino, C. Athos, M. Marcello, S. Milena, T. Carla, Structure and solid-state chemistry of anhydrous and hydrated crystal forms of the trimethoprim-sulfamethoxypyridazine 1:1 molecular complex, J. Pharm. Sci. 89 (2000) 478–489.
- [243] N. Furuyama, S. Hasegawa, T. Hamaura, S. Yada, H. Nakagami, E. Yonemochi, K. Terada, Evaluation of solid dispersions on a molecular level by the Raman mapping technique, Int. J. Pharm. 361 (2008) 12–18.
- [244] L. Bernardi, P. Oliveira, F. Murakami, M. Silva, S. Borgmann, S. Cardoso, Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients, J. Therm. Anal. Calorim. 97 (2009) 729–733.
- [245] S. Roy, S. Aitipamula, A. Nangia, Thermochemical analysis of venlafaxine hydrochloride polymorphs 1–5, Cryst. Growth Des. 5 (2005) 2268–2276.
- [246] L. Ribeiro, T. Loftsson, D. Ferreira, F. Veiga, Investigation and physicochemical characterization of vinpocetine-sulfobutyl ether β-cyclodextrin binary and ternary complexes, Chem. Pharm. Bull. 51 (2003) 914–922.
- [247] M. Sautel, G. Lépinasse, F. Leveiller, Study of the textural changes occurring during a solid state polymorphic transformation induced by temperature and relative humidity, Colloids Surf. A 187–188 (2001) 337–347.
- [248] G.W. Stowell, R.J. Behme, S.M. Denton, I. Pfeiffer, F.D. Sancilio, L.B. Whittall, R.R. Whittle, Thermally-prepared polymorphic forms of cilostazol, J. Pharm. Sci. 91 (2002) 2481–2488.
- [249] M. Mirmehrabi, S. Rohani, K.S.K. Murthy, B. Radatus, Characterization of tautomeric forms of ranitidine hydrochloride: thermal analysis, solid-state NMR, X-ray, J. Cryst. Growth 260 (2004) 517–526.
- [250] J.M. Miller, B.M. Collman, L.R. Greene, D.J.W. Grant, A.C. Blackburn, Identifying the stable polymorph early in the drug discovery-development process, Pharm. Dev. Technol. 10 (2005) 291–297.
- [251] Y. Gong, B.M. Collman, S.M. Mehrens, E. Lu, J.M. Miller, A. Blackburn, D.J.W. Grant, Stable-form screening: overcoming trace impurities that inhibit solution-mediated phase transformation to the stable polymorph of sulfamerazine, J. Pharm. Sci. 97 (2008) 2130–2144.
- [252] H.R.H. Ali, H.G.M. Edwards, I.J. Scowen, Insight into thermally induced solidstate polymorphic transformation of sulfathiazole using simultaneous in situ Raman spectroscopy and differential scanning calorimetry, J. Raman Spectrosc. 40 (2009) 887–892.
- [253] Y. Sonoda, F. Hirayama, H. Arima, Y. Yamaguchi, W. Saenger, K. Uekama, Selective crystallization of the metastable form IV polymorph of tolbutamide in the presence of 2,6-di-O-methyl-β-cyclodextrin in aqueous solution, Cryst. Growth Des. 6 (2006) 1181–1185.
- [254] M. Koivisto, P. Heinänen, V. Tanninen, V.-P. Lehto, Depth profiling of compression-induced disorders and polymorphic transition on tablet surfaces with grazing incidence X-ray diffraction, Pharm. Res. 23 (2006) 813–820.
- [255] M. Blanco, M. Alcalá, J.M. González, E. Torras, Near infrared spectroscopy in the study of polymorphic transformations, Anal. Chim. Acta 567 (2006) 262–268.
- [256] M. Descamps, J.F. Willart, E. Dudognon, V. Caron, Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg, J. Pharm. Sci. 96 (2007) 1398–1407.
- [257] K.A. Graeser, C.J. Strachan, J.E. Patterson, K.C. Gordon, T. Rades, Physicochemical properties and stability of two differently prepared amorphous forms of simvastatin, Cryst. Growth Des. 8 (2008) 128–135.
- [258] A.D. Gift, P.E. Luner, L. Luedeman, L.S. Taylor, Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries, J. Pharm. Sci. 97 (2008) 5198–5211.
- [259] K. Kogermann, J.A. Zeitler, J. Rantanen, T. Rades, P.F. Taday, M. Pepper, J. Heinämäki, CJ. Strachan, Investigating dehydration from compacts using Terahertz pulsed, Raman, and near-infrared spectroscopy, Appl. Spectrosc. 61 (2007) 1265–1274.
- [260] S. Airaksinen, M. Karjalainen, E. Räsänen, J. Rantanen, J. Yliruusi, Comparison of the effects of two drying methods on polymorphism of theophylline, Int. J. Pharm. 276 (2004) 129–141.
- [261] M.K. Stanton, A. Bak, Physicochemical properties of pharmaceutical cocrystals: a case study of ten AMG 517 co-crystals, Cryst. Growth Des. 8 (2008) 3856–3862.

- [262] S. Aitipamula, P.S. Chow, R.B.H. Tan, Polymorphs and solvates of a cocrystal involving an analgesic drug, ethenzamide, and 3,5-dinitrobenzoic acid, Cryst. Growth Des. 10 (2010) 2229–2238.
- [263] S. Aitipamula, P.S. Chow, R.B.H. Tan, Dimorphs of a 1:1 cocrystal of ethenzamide and saccharin: solid-state grinding methods result in metastable polymorph, CrystEngComm 11 (2009) 889–895.
- [264] S. Aitipamula, P.S. Chow, R.B.H. Tan, Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs, CrystEngComm 11 (2009) 1823–1827.
- [265] S. Aitipamula, P.S. Chow, R.B.H. Tan, Conformational and enantiotropic polymorphism of a 1:1 cocrystal involving ethenzamide and ethylmalonic acid, CrystEngComm 12 (2010) 3691–3697.
- [266] S.L. Childs, L.J. Chyall, J.T. Dunlap, V.N. Smolenskaya, B.C. Stahly, G.P. Stahly, Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids, J. Am. Chem. Soc. 126 (2004) 13335–13342.